968 resultados para CHIRAL SYMMETRY
Resumo:
Stereo- and enantiospecific total synthesis of the irregular sesquiterpene, valeranone, starting from S-6-methylcarvone employing a hydrindanone to decalone ring expansion methodology, is described.
Resumo:
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a �Full Text� option. The original article is trackable via the �References� option.
Resumo:
Generation of the thermodynamic dienolate of 9-bromocarvone derivatives 5, 7 and 11 furnished the chiral bicycle[2.2.2] octenones 6, 8 and 9 and 12 and 13 containing a bridgehead methyl group via an intramolecular alkylation reaction. In an analogous manner intramolecular alkylation reaction of the bromo enones 15a-e, obtained from carvone 2 by 1,3-alkylative enone transposition (-->14) followed by a regiospecific bromoetherification reaction, furnished the bicyclo[2.2.2]oct-5-en-2-ones 16a-e and 17a-e.
Resumo:
Diastereomers (SRu,Sc)-1a and (RRu,Sc)-1b, in a ratio of 85: 15 and formulated as [Ru(η-MeC6H4Pri-p)Cl(L*)], have been prepared by treating [{Ru(η-MeC6H4Pri-p)Cl2}2] with the sodium salt of (S)-α-methylbenzylsalicylaldimine (HL*) in tetrahydrofuran at –70 °C. The reaction of 1(1a+1b) with AgClO4 in acetone followed by an addition of PPh3 or 4-methylpyridine (4Me-py) leads to the formation of adducts [Ru(η-MeC6H4Pri-p)(PPh3)(L*)]ClO42[(SRu,Sc)2a, (FRu,Sc)2b] and [Ru(η-MeC6H4Pri-p)(4Me-py)(L*)]ClO43[(SRu,Sc)3a, (RRu,Sc)3b] in the diastereomeric ratios (SRu,Sc) : (RRu,Sc) of 2 : 98 and 76 : 24, respectively. Complex 1 crystallises with equal numbers of 1a and 1b molecules in an asymmetric unit of monoclinic space group P21 with a= 10.854(1), b= 17.090(1), c= 12.808(4)Å, β= 110.51(1)°, and Z= 4. The structure was refined to R= 0.0552 and R′= 0.0530 with 2893 reflections having I[gt-or-equal] 1.5σ(I). The absolute configurations of the chiral centres in the optically pure single crystal of the PPh3 adduct have been obtained from an X-ray study. Crystals of formulation [Ru(η-MeC6H4Pri-p)-(PPh3)(L*)]2[ClO4][PF6]·1.5 CHCl3, obtained in presence of both ClO4 and PF6 anions, belong to the non-centric triclinic space group P1 with a= 10.852(2), b= 14.028(1), c= 15.950(2)Å, α= 91.51(1), β= 105.97(1), γ= 106.11(1)°, and Z= 2. The final residuals were R= 0.0713, R′= 0.0752 with 7283 reflections having I[gt-or-equal] 2.5σ(I). The crystal structures of 1a,1b, and the PPh3 adduct (2b,2b′) consist of a ruthenium(II) centre bonded to a η-p-cymene, a bidentate chelating Schiff base, and a unidentate ligand (Cl or PPh3). The chirooptical properties of the complexes have been studied using 1H NMR and CD spectral data. The presence of a low-energy barrier for the intermediate involved in these reactions, showing both retention as well as inversion of the metal configuration, is discussed.
Resumo:
The higher substrate and chiral auxiliary concentration is a pre-requisite to obtain efficient separation of H-1 NMR signals of enantiomers. The higher concentration of chiral lanthanide shift reagents provides broadened spectral lines resulting in a severe loss of resolution between the enantiomer resonances. In order to circumvent such difficulties, herein we present the application and the usefulness of a selective F-1 decoupled correlation (COSY) experiment which yields proton decoupled proton spectra in the indirect dimension. The potentiality of the experiment is demonstrated on several chiral compounds possessing different functional groups, employing either a lanthanide shift reagent or a solvating reagent as chiral auxiliaries. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
New chiral diphosphazane ligands of the type Ph(2)PN(S-*CHMePh)PYY' {YY'= Ph(2) (2), O2C6H4 (3); Y= Ph, Y'= Cl {4a (SS), 4b (SR)}, N(2)C(3)HMe(2)-3,5 {5a (SR), 5b (SS)} are synthesised starting from a chiral aminophosphine, Ph(2)PNH(S-*CHMePh) (1). The structure of one of the diastereomer 5a has been confirmed by single crystal X-ray diffraction {Orthorhombic system, P2(1)2(1)2(1); a=10.456 (4), b=15.362 (7), c=17.379 (6) Angstrom, Z=4}. Transition metal mononuclear complexes [Rh{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}(2)](+)(BF4)(-) (6), [PdCl2{eta(2)-(Ph(2)P)(2)N(S-*CHMePh)}] (7) and [PtCl2{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}] (8) have also been synthesised. The structure of the palladium complex 7 is solved by X-ray crystallography {Orthorhombic system, P2(1)2(1)2(1); a=8.746 (2), b=18.086 (2), c=20.811 (3) Angstrom, Z=4}. All these compounds are characterised by micro analyses, IR and NMR spectroscopic data.
Resumo:
Model studies, starting from the monoterpene R-carvone, directed towards the synthesis of chiral A-ring derivatives of taxanes with oxygen functionalities at C-2, 9 and 13 carbon atoms as in taxol is described.
Resumo:
It is well-known that the senses (or the handedness) of the helical assemblies formed from compressed monolayers and bilayers of chiral amphiphiles are highly specific about the chirality of the monomers concerned. We present here a molecular approach that can successfully predict the senses of such helical morphologies. The present approach is based on a reduced tractable description in terms of an effective pair potential (EPP) which depends on the distance of separation and the relative orientations of the two amphiphiles. This approach explicitly considers the pairwise intermolecular interactions between the groups attached to the chiral centers of the two neighboring amphiphiles. It is found that for a pair of the same kind of enantiomers the minimum energy configuration favors a twist angle between molecules and that this twist from neighbor to neighbor gives rise to the helicity of the aggregate. From the known twist angles at the minimum energy configuration the successive arrangement of an array of molecules can be predicted. Therefore, the sense of the helicity can be predicted from the molecular interactions. The predicted senses of the helical structures are in complete agreement with all known experimental results.
Resumo:
Seizure electroencephalography (EEG) was recorded from two channels-right (Rt) and left (Lt)-during bilateral electroconvulsive therapy (ECT) (n = 12) and unilateral ECT (n = 12). The EEG was also acquired into a microcomputer and was analyzed without knowledge of the clinical details. EEG recordings of both ECT procedures yielded seizures of comparable duration. The Strength Symmetry Index (SSI) was computed from the early- and midseizure phases using the fractal dimension of the EEG. The seizures of unilateral ECT were characterized by significantly smaller SSI in both phases. More unilateral than bilateral ECT seizures had a smaller than median SSI in both phases. The seizures also differed on other measures as reported in the literature. The findings indicate that SSI may be a potential measure of seizure adequacy that remains to be validated in future research.
Resumo:
A range of novel chiral tellurium compounds having an azomethine functional group in the position ortho to tellurium has been synthesized by the reaction of the tellurium-containing aldehydes bis(o-formylphenyl) telluride (1) and o-(butyltelluro)benzaldehyde (4) with chiral amines (R)-(+)-(1-pheylethylamine) and (1R,2S)-(-)-norephedrine, respectively. The precursor aldehydes were prepared by using a reported procedure with slight but advantageous modifications. During the preparation of o-(butyltelluro)benzaldehyde, interesting side products, namely bis(o-formylphenyl) ditelluride ethylene acetal 5, bis(o-formylphenyl) tritelluride (6), and bis(o-formylphenyl) ditelluride (7) were isolated in moderate yields. The ditelluride 7 has been characterized by single-crystal X-ray diffraction studies. The liquid Schiff bases 10 and 11 were further characterized by derivatizing with liquid bromine. The title compound was obtained in excellent yield by reacting the Schiff base 11 with elemental bromine. Detailed NMR studies indicated the presence of a rigid environment for the hydroxyl group. Single-crystal X-ray determinations of the crystals obtained from the different batches indicated. the presence of the two pseudopolymorphic forms 13a and 13b, respectively. In the case of 13a there is one molecule of CH3CN as solvent of crystallization, whereas in 13b half a molecule of CH3CN per molecule of the title compound lies along the 2-fold axis. In 13a the hydroxyl hydrogen is hydrogen-bonded to the nitrogen of the solvent molecule, whereas in 13b it is hydrogen-bonded to the bromine of the neighboring molecule.
Resumo:
Synthesis of chiral bicyclo[4.3.1]decanes via an intramolecular acid catalysed type II ene reaction of chiral (5-isopropenylcyclohex-2-enyl)acetaldehydes derived from (R)-carvone is described. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Several secondary alcohols undergo the Mitsunobu reaction with triphenylphosphine, diethyl azodicarboxylate and (1S)-(+)-ketopinic acid (0.5 equiv. each relative to alcohol) in CH2Cl2 solution at -23degreesC, to furnish the chiral secondary alcohol and its ketopinate ester (d.e. >95%,). Chromatographic separation of these and subsequent hydrolysis of the ketopinate ester (KOH EtOH/0degreesC) provides the chiral secondary alcohol in overall yields of similar to75% and e.e. of similar to80%. When the above Mitsunobu reaction is performed with 1 equiv. of all the reactants. an effective dynamic kinetic resolution of the alcohol is observed in two cases, the ketopinate esters being isolated in 63 and 75% yields and >95% d.e. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The first enantiospecific total synthesis of (-)-9-pupukeanone, starting from (R)-carvone employing a combination of Michael-Michael reaction and an intramolecular rhodium carbenoid C H insertion reaction as key steps, is described. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Enantiospecific total synthesis of the natural enantiomer of the marine sesquiterpene (-)-4-thiocyanatoneopupukeanane (6) is described. The bicyclo[2.2.2]octanonecarboxylate 11, obtained from (R)-carvone and methyl methacrylate via Michael-Michael reaction, was transformed into bicyclo[2.2.2]octenecarboxylic acid 8. Intramolecular cyclopropanation reaction of the diazo ketone 7, derived from the acid 8, followed by regioselective reductive cyclopropane ring cleavage generated neopupukeanol 20, which was transformed into (-)-4-thiocyanatoneopupukeanane 6.