983 resultados para CELL-WALLS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CR-LAAO is an l-amino acid oxidase from Calloselasma rhodostoma snake venom that has been broadly studied regarding its structural and biochemical characteristics, however, few studies have investigated its pharmacological effects. The present study aimed at the evaluation of the biotechnological potential of CR-LAAO by determining its bactericidal, antifungal, leishmanicidal and trypanocidal activity, as well as its cytotoxicity on human tumor and non-tumor cell lines. After 24h of preincubation, CR-LAAO showed bactericidal effects against both Staphylococcus aureus (MIC 0.78μg/mL) and Escherichia coli (MIC 31.25μg/mL) strains, inducing dismantle of bacterial cell walls. After 6h of preincubation with Candida albicans, CR-LAAO was able to inhibit 80% of the yeast growth, and it also showed cytotoxic activity on Leishmania species and Trypanosoma cruzi. Additionally, CR-LAAO showed high cytotoxicity on HepG2 and HL-60 tumor cells (IC50 10.78 and 1.7μg/mL), with lower effects on human mononuclear cells (PBMC). The cytotoxic effects of CR-LAAO were significantly inhibited in the presence of catalase, which suggests the involvement of hydrogen peroxide in its mechanisms of toxicity. Therefore, CR-LAAO showed promising pharmacological effects, and these results provide important information for the development of therapeutic strategies with directed action, such as more effective antimicrobial agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Castor bean is a nutrient-demanding species, but there is still little information on its micronutrient requirements. The objectives of this study were to evaluate the effects of levels of B (2.5, 12.5 and 25.0 mu mol L-1), Cu (0.05, 0.25 and 0.50 mu mol L-1), Mn (0.2, 1.0 and 2.0 mu mol L-1) and Zn (0.2, 1.0 and 2.0 mu mol L-1) in a nutrient solution on plant B, Cu, Mn and Zn concentrations and uptake, vegetative growth and fruit yield of castor bean "Iris", grown in greenhouse. The experiment was arranged in a completely randomized block design with three replicates. The first deficiency symptoms were observed for B, followed by Zn, Cu and Mn. The main changes in the cell ultrastructure due to lack of B were thickening of the cell walls and middle lamellae, distorted chloroplasts and tightly stacked thylakoids, besides the absence of starch grains. The Mn, Zn and Cu deficiencies led to disruption of chloroplasts, disintegration of thylakoids and absence of amyloplasts. The concentration and uptake of B, Cu, Mn, and Zn in castor bean plants increased with micronutrient supply in the solution. Fruit yield was drastically reduced by B and Mn deficiencies. On the other hand, the dry matter yield of the shoot and root of castor bean plants was not. In the treatment with full nutrient solution, the leaves accumulated 56 and 48 % of the total B and Mn taken up by the plants, respectively, and the seeds and roots 85 and 61 % of the total Cu and Zn taken up, respectively. This shows the high demand of castor bean Iris for B and Mn for fruit yield.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel water-soluble decacationically armed C-60 and C-70 decaiodide monoadducts, C-60- and C-70[>M(C3N6+C3)(2)], were synthesized, characterized, and applied as photosensitizers and potential nano-PDT agents against pathogenic bacteria and cancer cells. A high number of cationic charges per fullerene cage and H-bonding moieties were designed for rapid binding to the anionic residues displayed on the outer parts of bacterial cell walls. In the presence of a high number of electron-donating iodide anions as parts of quaternary ammonium salts in the arm region, we found that C-70[>M(C3N6+C3)(2)] produced more HO center dot than C-60[>M(C3N6+C3)(2)], in addition to O-1(2). This finding offers an explanation of the preferential killing of Gram-positive and Gram-negative bacteria by C-60[>M(C3N6+C3)(2)] and C-70[>M(C3N6+C3)(2)], respectively. The hypothesis is that O-1(2) can diffuse more easily into porous cell walls of Gram-positive bacteria to reach sensitive sites, while the less permeable Gram-negative bacterial cell wall needs the more reactive HO center dot to cause real damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plant pathogen Fusarium solani causes a disease root rot of common bean (Phaseolus vulgaris) resulting in great losses of yield in irrigated areas of the Southeast and Midwest regions of Brazil. Species of the genus Trichoderma have been used in the biological control of this pathogen as an alternative to chemical control. To gain new insights into the biocontrol mechanism used by Trichoderma harzianum against the phytopathogenic fungus, Fusarium solani, we performed a transcriptome analysis using expressed sequence tags (ESTs) and quantitative real-time PCR (RT-qPCR) approaches. A cDNA library from T. harzianum mycelium (isolate ALL42) grown on cell walls of F. solani (CWFS) was constructed and analyzed. A total of 2927 high quality sequences were selected from 3845 and 37.7% were identified as unique genes. The Gene Ontology analysis revealed that the majority of the annotated genes are involved in metabolic processes (80.9%), followed by cellular process (73.7%). We tested twenty genes that encode proteins with potential role in biological control. RT-qPCR analysis showed that none of these genes were expressed when T. harzianum was challenged with itself. These genes showed different patterns of expression during in vitro interaction between T. harzianum and F. solani. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We performed morphological and molecular studies of Laurencia catarinensis from the Canary Islands. This species has an entangled habit, cushion-like tuft formation, cortical cell walls, slightly to markedly projecting near the apex, and lacking lenticular thickenings in medullary cells. We inferred its phylogenetic position by analyzing the chloroplast-encoded rbcL gene sequences from 41 samples. The results demonstrate that specimens of L. catarinensis from the Canary Islands, where it is referred to as L. intricata, and those from Brazil (including specimens from the type locality in Santa Catarina) form a monophyletic clade with low genetic divergence (0-0.9%). In contrast, specimens of L. intricata from the type locality in Cuba, Mexico, and the USA were clearly distinct from L. catarinensis collected in Brazil and the Canary Islands, as shown by high genetic divergence values (4.9-5.7%). The type material of L. catarinensis from Brazil allowed us to identify all samples from the Canarian Archipelago as L. catarinensis. These findings expand the known geographical distribution of L. catarinensis to the eastern Atlantic Ocean and demonstrate an amphi-Atlantic distribution of the species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study investigated the germination and vigor of Caesalpinia echinata (Brazilwood) seeds stored at negative temperatures. Recently harvested seeds were cryopreserved at -18 degrees or -196 degrees C and periodically evaluated for germination, seed vigor and carbohydrate composition. The temperatures did not influence the germination percentages or vigor. The germination percentage decreased from 88% in recently harvested seeds to 60% after 730 days of storage. The different temperature and storage times tested did not affect the vigor seed germination as indicated by the measures of plant growth and survival. The different temperatures used did not cause changes in the carbohydrate composition. The tegument cell walls were rich in lignin, arabinose and xylose. The cytoplasm of the cotyledons and embryos had high levels of glucose, fructose, and sucrose. The cryopreservation technique here presented was effective in the conservation of Brazilwood seeds for the medium term.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

(Silicon location through backscattered electron imaging and X-ray microanalysis in leaves of Cyperus ligularis L. and Rhynchospora aberrans C. B. Clarke (Cyperaceae)). The Cyperaceae show the ability to incorporate silicon by depositing colloidal silica, which is recorded by the occurrence of projections in the form of cones, in inner tangential walls of some epidermal cells or "silica cells". Leaves of C. ligularis and R. aberrans were analyzed through the technique of electron backscatter. Cyperus ligularis accumulates silica, in addition to "silica cells", in some stomata, trichomes and the cell walls that surround the cavities of the aerenchyma. The silica in the latter occurs in various forms; however, the cells located near the vascular bundles have conical projections, similar to those of the epidermis. Rhynchospora aberrans presents "silica cells" whose projections have tapered "satellites". In this species, silica also occurs in stomata and certain epidermal cells adjacent to them. It appears that the silicon deposition occurs in combination with the wall (with no apparent structural changes), and structures of secretion, or projections of the wall. These structural changes in the species, and location, are probably related to functional and environmental factors, especially the soil, in addition to relation with taxonomic groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xylanases (EC 3.2.1.8 endo-1,4-glycosyl hydrolase) catalyze the hydrolysis of xylan, an abundant hemicellulose of plant cell walls. Access to the catalytic site of GH11 xylanases is regulated by movement of a short beta-hairpin, the so-called thumb region, which can adopt open or closed conformations. A crystallographic study has shown that the D11F/R122D mutant of the GH11 xylanase A from Bacillus subtilis (BsXA) displays a stable "open" conformation, and here we report a molecular dynamics simulation study comparing this mutant with the native enzyme over a range of temperatures. The mutant open conformation was stable at 300 and 328 K, however it showed a transition to the closed state at 338 K. Analysis of dihedral angles identified thumb region residues Y113 and T123 as key hinge points which determine the open-closed transition at 338 K. Although the D11F/R122D mutations result in a reduction in local inter-intramolecular hydrogen bonding, the global energies of the open and closed conformations in the native enzyme are equivalent, suggesting that the two conformations are equally accessible. These results indicate that the thumb region shows a broader degree of energetically permissible conformations which regulate the access to the active site region. The R122D mutation contributes to the stability of the open conformation, but is not essential for thumb dynamics, i.e., the wild type enzyme can also adapt to the open conformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v) or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process), the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse) to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between neighboring cell walls, as well as by changes in the inner cell wall structure, such as damaging, hole formation and loss of mechanical resistance, facilitating liquid and enzyme access to crystalline cellulose. Conclusions The results presented herewith show the efficiency of the proposed method for improving the enzymatic digestibility of sugarcane bagasse and provide understanding of the pretreatment action mechanism. Combining the different techniques applied in this work warranted thorough information about the undergoing morphological and chemical changes and was an efficient approach to understand the morphological effects resulting from sample delignification and its influence on the enhanced hydrolysis results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Castor bean is a nutrient-demanding species, but there is still little information on its micronutrient requirements. The objectives of this study were to evaluate the effects of levels of B (2.5, 12.5 and 25.0 µmol L-1), Cu (0.05, 0.25 and 0.50 µmol L-1), Mn (0.2, 1.0 and 2.0 µmol L-1) and Zn (0.2, 1.0 and 2.0 µmol L-1) in a nutrient solution on plant B, Cu, Mn and Zn concentrations and uptake, vegetative growth and fruit yield of castor bean "Iris", grown in greenhouse. The experiment was arranged in a completely randomized block design with three replicates. The first deficiency symptoms were observed for B, followed by Zn, Cu and Mn. The main changes in the cell ultrastructure due to lack of B were thickening of the cell walls and middle lamellae, distorted chloroplasts and tightly stacked thylakoids, besides the absence of starch grains. The Mn, Zn and Cu deficiencies led to disruption of chloroplasts, disintegration of thylakoids and absence of amyloplasts. The concentration and uptake of B, Cu, Mn, and Zn in castor bean plants increased with micronutrient supply in the solution. Fruit yield was drastically reduced by B and Mn deficiencies. On the other hand, the dry matter yield of the shoot and root of castor bean plants was not. In the treatment with full nutrient solution, the leaves accumulated 56 and 48 % of the total B and Mn taken up by the plants, respectively, and the seeds and roots 85 and 61 % of the total Cu and Zn taken up, respectively. This shows the high demand of castor bean Iris for B and Mn for fruit yield.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study investigated the germination and vigor of Caesalpinia echinata (Brazilwood) seeds stored at negative temperatures. Recently harvested seeds were cryopreserved at -18º or -196ºC and periodically evaluated for germination, seed vigor and carbohydrate composition. The temperatures did not influence the germination percentages or vigor. The germination percentage decreased from 88% in recently harvested seeds to 60% after 730 days of storage. The different temperature and storage times tested did not affect the vigor seed germination as indicated by the measures of plant growth and survival. The different temperatures used did not cause changes in the carbohydrate composition. The tegument cell walls were rich in lignin, arabinose and xylose. The cytoplasm of the cotyledons and embryos had high levels of glucose, fructose, and sucrose. The cryopreservation technique here presented was effective in the conservation of Brazilwood seeds for the medium term.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.