933 resultados para CD4 T lymphocytes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main targets of human immunodeficiency virus (HIV) are CD4 receptors of CD4+ lymphocytes and many other cells such as monocytes/macrophages, megakaryocytes, peripheral blood dendritic cells, follicular dendritic cells (DC), epidermal Langerhans cells, and astrocytes. Infection and killing of CD4+ lymphocytes or false reaction of the body to HIV infection and the spontaneous apoptosis of CD4+ lymphocytes decrease CD4+ lymphocyte counts leading to immunosuppression, further disease progression, and appearance of opportunistic infections and malignancies. Oral manifestations are considered to be among the first signs of HIV infection. Enhanced degradation of extracellular matrix and basement membrane components in oral diseases including periodontitis is caused by Zn-dependent enzymes called matrix metalloproteinases (MMPs). The levels and degrees of activation of MMP-1, -2, -3, -7, -8, -9, -25, -26, tissue inhibitors of MMPs (TIMP)-1 and -2, and myeloperoxidase (MPO) and collagenolytic/gelatinolytic activities, and also Ig A, -G, and -M, total protein, and albumin levels in a two-year follow-up were studied from salivary samples. The expression of MMP-7, -8, -9, -25, and -26 immunoreactivities in gingival tissue specimens were studied. Healthy HIV-negative subjects served as controls. All studied clinical periodontal parameters and microbiological evaluation of the periodontopathogens showed that periodontal health of the HIV-positive patients was moderately decreased in comparison to the healthy controls. The levels of Candida in the periodontal pockets and salivary MPO increased with the severity of HIV infection. Immunoreactivities and levels of MMPs and TIMPs, and MMP activities (collagenase, gelatinase) were enhanced in the HIV-positive patient salivary samples relative to the healthy controls regardless of the phase of HIV infection. However, these parameters did not reflect periodontal status in a similar way as in the generally healthy periodontitis patients. Salivary total protein, albumin, IgA, -G, and -M levels were significantly higher in all phases of HIV infection compared to the controls, and salivary total protein, IgG and IgM levels remained higher after two years follow-up, partly correlating with the disease progression and which may reflect the leakage of serum components into the mouth and thus a decreased mucosal barrier. Salivary analyses of MMPs and TIMPs with immunohistochemical analyses showed that HIV infection could predispose to periodontal destruction when compared with healthy controls or the body s defence reactions associated with HIV infection may have been reflected or mediated by MMPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal expansion or depletion of particular lymphocyte subsets is associated with clinical manifestations such as HIV progression to AIDS and autoimmune disease. We sought to identify genetic predictors of lymphocyte levels and reasoned that these may play a role in immune-related diseases. We tested 2.3 million variants for association with five lymphocyte subsets, measured in 2538 individuals from the general population, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells, and the derived measure CD4:CD8 ratio. We identified two regions of strong association. The first was located in the major histocompatibility complex (MHC), with multiple SNPs strongly associated with CD4:CD8 ratio (rs2524054, p = 2.1 × 10−28). The second region was centered within a cluster of genes from the Schlafen family and was associated with NK cell levels (rs1838149, p = 6.1 × 10−14). The MHC association with CD4:CD8 replicated convincingly (p = 1.4 × 10−9) in an independent panel of 988 individuals. Conditional analyses indicate that there are two major independent quantitative trait loci (QTL) in the MHC region that regulate CD4:CD8 ratio: one is located in the class I cluster and influences CD8 levels, whereas the second is located in the class II cluster and regulates CD4 levels. Jointly, both QTL explained 8% of the variance in CD4:CD8 ratio. The class I variants are also strongly associated with durable host control of HIV, and class II variants are associated with type-1 diabetes, suggesting that genetic variation at the MHC may predispose one to immune-related diseases partly through disregulation of T cell homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cells expressing NK cell receptors (NKR) display rapid MHC-unrestricted cytotoxicity and potent cytokine secretion and are thought to play roles in immunity against tumors. We have quantified and characterized NKR+ T cells freshly isolated from epithelial and lamina propria layers of duodenum and colon from 16 individuals with no evidence of gastrointestinal disease and from tumor and uninvolved tissue from 19 patients with colorectal cancer. NKR+ T cell subpopulations were differentially distributed in different intestinal compartments, and CD161+ T cells accounted for over one half of T cells at all locations tested. Most intestinal CD161+ T cells expressed alpha beta TCR and either CD4 or CD8. Significant proportions expressed HLA-DR,CD69 and Fas ligand. Upon stimulation in vitro, CD161+ T cells produced IFN-gamma and TNF-alpha but not IL-4. NKT cells expressing the Valpha24Vbeta11 TCR, which recognizes CD1d,were virtually absent from the intestine, but colonic cells produced IFN-gamma in response to the NKT cell agonist ligand alpha-galactosylceramide. NKR+ T cells were not expanded in colonic tumors compared to adjacent uninvolved tissue. The predominance, heterogeneity and differential distribution of NKR+ T cells at different intestinal locations suggests that they are central to intestinal immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported that Lyt(2+) cytotoxic T lymphocytes (CTL) can be raised against Japanese encephalitis virus (JEV) in BALB/c mice. In order to confirm the presence of H-2K(d)-restricted CTL and to examine their cross-recognition of West Wile virus (WNV), we tested the capacity of anti-JEV CTL to lyse uninfected syngeneic target cells that were pulsed with synthetic peptides. The sequence of the synthetic peptides was predicted based upon the H-2K(d) binding consensus motif. We show here that preincubation of uninfected syngeneic targets (P388D1) with JEV NS1- and NS3-derived peptides [NS1 (891-899) and NS3 (1804-1812)], but not with JEV NS5-derived peptide [NS5 (3370-3378)], partially sensitized them for lysis by polyclonal anti-JEV CTL. These results indicate the CTL recognition of NS1- and NS3-derived peptides of JEV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis readily activates both CD4+ and Vdelta2+ gammadelta T cells. Despite similarity in function, these T-cell subsets differ in the antigens they recognize and the manners in which these antigens are presented by M. tuberculosis-infected monocytes. We investigated mechanisms of antigen processing of M. tuberculosis antigens to human CD4 and gammadelta T cells by monocytes. Initial uptake of M. tuberculosis bacilli and subsequent processing were required for efficient presentation not only to CD4 T cells but also to Vdelta2+ gammadelta T cells. For gammadelta T cells, recognition of M. tuberculosis-infected monocytes was dependent on Vdelta2+ T-cell-receptor expression. Recognition of M. tuberculosis antigens by CD4+ T cells was restricted by the class II major histocompatibility complex molecule HLA-DR. Processing of M. tuberculosis bacilli for Vdelta2+ gammadelta T cells was inhibitable by Brefeldin A, whereas processing of soluble mycobacterial antigens for gammadelta T cells was not sensitive to Brefeldin A. Processing of M. tuberculosis bacilli for CD4+ T cells was unaffected by Brefeldin A. Lysosomotropic agents such as chloroquine and ammonium chloride did not affect the processing of M. tuberculosis bacilli for CD4+ and gammadelta T cells. In contrast, both inhibitors blocked processing of soluble mycobacterial antigens for CD4+ T cells. Chloroquine and ammonium chloride insensitivity of processing of M. tuberculosis bacilli was not dependent on the viability of the bacteria, since processing of both formaldehyde-fixed dead bacteria and mycobacterial antigens covalently coupled to latex beads was chloroquine insensitive. Thus, the manner in which mycobacterial antigens were taken up by monocytes (particulate versus soluble) influenced the antigen processing pathway for CD4+ and gammadelta T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The granule exocytosis cytotoxicity pathway is the major molecular mechanism for cytotoxic T lymphocyte (CTL) and natural killer (NK) cytotoxicity, but the question of how these cytotoxic lymphocytes avoid self-destruction after secreting perforin has remained unresolved. We show that CTL and NK cells die within a few hours if they are triggered to degranulate in the presence of nontoxic thiol cathepsin protease inhibitors. The potent activity of the impermeant, highly cathepsin B-specific membrane inhibitors CA074 and NS-196 strongly implicates extracellular cathepsin B. CTL suicide in the presence of cathepsin inhibitors requires the granule exocytosis cytotoxicity pathway, as it is normal with CTLs from gld mice, but does not occur in CTLs from perforin knockout mice. Flow cytometry shows that CTLs express low to undetectable levels of cathepsin B on their surface before degranulation, with a substantial rapid increase after T cell receptor triggering. Surface cathepsin B eluted from live CTL after degranulation by calcium chelation is the single chain processed form of active cathepsin B. Degranulated CTLs are surface biotinylated by the cathepsin B-specific affinity reagent NS-196, which exclusively labels immunoreactive cathepsin B. These experiments support a model in which granule-derived surface cathepsin B provides self-protection for degranulating cytotoxic lymphocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor beta [TGF-beta]) cytokines. IL-10 and TGF-beta are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-beta on M. tuberculosis-reactive human CD4(+) and gammadelta T cells, the two major human T-cell subsets activated by M. tuberculosis, was investigated. Both IL-10 and TGF-beta inhibited proliferation and gamma interferon production by CD4(+) and gammadelta T cells. IL-10 was a more potent inhibitor than TGF-beta for both T-cell subsets. Combinations of IL-10 and TGF-beta did not result in additive or synergistic inhibition. IL-10 inhibited gammadelta and CD4(+) T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4(+) T cells and, to a lesser extent, for gammadelta T cells. TGF-beta inhibited both CD4(+) and gammadelta T cells directly and had little effect on APC function for gammadelta and CD4(+) T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-beta. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-beta both inhibited CD4(+) and gammadelta T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Multiple sclerosis (MS) is thought to be a T cell-mediated autoimmune disorder. MS pathogenesis is likely due to a genetic predisposition triggered by a variety of environmental factors. Epigenetics, particularly DNA methylation, provide a logical interface for environmental factors to influence the genome. In this study we aim to identify DNA methylation changes associated with MS in CD8+ T cells in 30 relapsing remitting MS patients and 28 healthy blood donors using Illumina 450K methylation arrays. Findings Seventy-nine differentially methylated CpGs were associated with MS. The methylation profile of CD8+ T cells was distinctive from our previously published data on CD4+ T cells in the same cohort. Most notably, there was no major CpG effect at the MS risk gene HLA-DRB1 locus in the CD8+ T cells. Conclusion CD8+ T cells and CD4+ T cells have distinct DNA methylation profiles. This case–control study highlights the importance of distinctive cell subtypes when investigating epigenetic changes in MS and other complex diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4+ and gamma delta T cells are activated readily by Mycobacterium tuberculosis. To examine their role in the human immune response to M. tuberculosis, CD4+ and gamma delta T cells from healthy tuberculin-positive donor were studied for patterns of Ag recognition, cytotoxicity, and cytokine production in response to M. tuberculosis-infected mononuclear phagocytes. Both T cell subsets responded to intact M. tuberculosis and its cytosolic Ags. However, CD4+ and gamma delta T cells differed in the range of cytosolic Ags recognized: reactivity to a wide m.w. range of Ags for CD4+ T cells, and a restricted pattern for gamma delta T cells, with dominance of Ags of 10 to 15 kDa. Both T cell subsets were equally cytotoxic for M. tuberculosis-infected monocytes. Furthermore, both CD4+ and gamma delta T cells produced large amounts of IFN-gamma: mean pg/ml of IFN-gamma in supernatants was 2458 +/- 213 for CD4+ and 2349 +/- 245 for gamma delta T cells. By filter-spot ELISA (ELISPOT), the frequency of IFN-gamma-secreting gamma delta T cells was one-half of that of CD4+ T cells in response to M. tuberculosis, suggesting that gamma delta T cells on a per cell basis were more efficient producers of IFN-gamma than CD4+ T cells. In contrast, CD4+ T cells produced more IL-2 than gamma delta T cells, which correlated with diminished T cell proliferation of gamma delta T cells compared with CD4+ T cells. These results indicate that CD4+ and gamma delta T cell subsets have similar effector functions (cytotoxicity, IFN-gamma production) in response to M. tuberculosis-infected macrophages, despite differences in the Ags recognized, IL-2 production, and efficiency of IFN-gamma production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The outer domain (OD) of the HIV-1 envelope glycoprotein gp120 is an important target for vaccine design as it contains a number of conserved epitopes, including a large fraction of the CD4 binding site.Attempts to design OD-based immunogens in the past have met with little success. We report the design and characterization of an Escherichia coli-expressed OD-based immunogen (ODEC), based on the sequence of the HxBc2 strain. The ODEC-designed immunogen lacks the variable loops V1V2 and V3 and incorporates 11 designed mutations at the interface of the inner and the outer domains of gp120. Biophysical studies showed that ODEC is folded and protease-resistant, whereas ODEC lacking the designed mutations is highly aggregation-prone. In contrast to previously characterized OD constructs, ODEC bound CD4 and the broadly neutralizing antibody b12 but not the non-neutralizing antibodies b6 and F105. Upon immunization in rabbits, ODEC was highly immunogenic,and the sera showed measurable neutralization for four subtype B and one subtype C virus including two b12-resistant viruses. In contrast,sera from rabbits immunized with gp120 did not neutralize any of the viruses. ODEC is the first example of a gp120 fragment-based immunogen that yields significant neutralizing antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H2O2 . In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca2+ concentrations Ca2+](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNF alpha and IFN gamma by CD4+ T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca2+ ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several H-2 defined cell lines were examined for their ability to support infection and replication of Japanese encephalitis virus (JEV) before their use in in vitro and in vivo stimulation protocols for generating cytotoxic T lymphocytes (CTLs) against JEV. Among II different cell lines tested, two H-2(d) macrophage tumour lines (P388D1, RAW 264.7), an H-2(d) hybridoma (Sp2/0), an H-2K(k)D(d) neuroblastoma (Neuro 2a), and H-2(k) fibroblast cell line (L929) were found to support JEV infection and replication. These cell lines were used to generate anti-JEV CTLs by using in vivo immunization followed by in vitro stimulation of BALB/c mice. We observed that not only syngeneic and allogeneic infected cells but also JEV-infected xenogeneic cells could prime BALB/c mice for the generation of JEV-specific CTLs upon subsequent in vitro stimulation of splenocytes with JEV-infected syngeneic cells. Although infected xenogeneic cells were used for immunization, the anti-JEV effecters that were generated lysed infected syngeneic targets but not JEV-infected xenogeneic or allogeneic target cells in a 5h Cr-51 release assay. These anti-JEV effecters recognized syngeneic target cells infected with West Nile virus to a lesser extent and were shown to be Lyt-2.2(+) T cells. The results of unlabelled cold target competition studies suggested alterations in the cell surface expression of viral antigenic determinants recognized by these CTLs. We further demonstrate that the JEV-specific CTLs generated could virtually block the release of infectious virus particles from infected P388D1 and Neuro 2a cells in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protective ability of cytotoxic T cells (CTL) raised in vitro against Japanese encephalitis virus (JEV) was examined by adoptive transfer experiments. Adoptive transfer of anti-JEV effecters by intracerebral (i.c.) but not by intraperitoneal (i.p.) or intravenous (i.v.) routes protected adult BALB/c mice against lethal i.c. JEV challenge. In contrast to adult mice, adoptive transfer of anti-JEV effecters into newborn (4-day-old) and suckling (8-14-day-old) mice did not confer protection. However, virus-induced death was delayed in suckling mice compared to newborn mice upon adoptive transfer. The specific reasons for lack of protection in newborn mice are not clear but virus load was found to be higher in newborn mice brains compared to those of adults and virus clearance was observed only in adult mice brains but not in newborn mice brains upon adoptive transfer. Specific depletion of Lyt 2.2(+), L3T4(+) or Thy-1(+) T cell populations before adoptive transfer abrogated the protective ability of transferred effecters. However, when Lyt 2.2(+) cell-depleted and L3T4(+) cell-depleted effecters were mixed and transferred into adult mice the protective activity was retained, demonstrating that both Lyt 2.2(+) and L3T4(+) T cells are necessary to confer protection. Although the presence of L3T4(+) T cells in adoptively transferred effector populations enhanced virus-specific serum neutralizing antibodies, the presence of neutralizing antibodies alone without Lyt 2.2(+) cells was not sufficient to confer protection.