951 resultados para C-H bond activation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activation of the human complement system of plasma proteins in response to infection or injury produces a 4-helix bundle glycoprotein (74 amino acids) known as C5a. C5a binds to G-protein-coupled receptors on cell surfaces triggering receptor-ligand internalization, signal transduction, and powerful inflammatory responses. Since excessive levels of C5a are associated with autoimmune and chronic inflammatory disorders, inhibitors of receptor activation may have therapeutic potential. We now report solution structures and receptor-binding and antagonist activities for some of the first small molecule antagonists of C5a derived from its hexapeptide C terminus. The antagonist NMe-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (1) surprisingly shows an unusually well-defined solution structure as determined by H-1 NMR spectroscopy. This is one of the smallest acyclic peptides found to possess a defined solution conformation, which can be explained by the constraining role of intramolecular hydrogen bonding. NOE and coupling constant data, slow deuterium exchange, and a low dependence on temperature for the chemical shift of the D-Cha-NH strongly indicate an inverse gamma turn stabilized by a D-Cha-NH ... OC-Lys hydrogen bond. Smaller conformational populations are associated with a hydrogen bond between Trp-NH ... OC-Lys, defining a type II beta turn distorted by the inverse gamma turn incorporated within it. An excellent correlation between receptor-affinity and antagonist activity is indicated for a limited set of synthetic peptides. Conversion of the C-terminal carboxylate of 1 to an amide decreases antagonist potency 5-fold, but potency is increased up to 10-fold over 1 if the amide bond is made between the C-terminal carboxylate and a Lys/Orn side chain to form a cyclic analogue. The solution structure of cycle 6 also shows gamma and beta turns; however, the latter occurs in a different position, and there are clear conformational changes in 6 vs 1 that result in enhanced activity. These results indicate that potent C5a antagonists can be developed by targeting site 2 alone of the C5a receptor and define a novel pharmacophore for developing powerful receptor probes or drug candidates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background-Catecholamines hasten cardiac relaxation through beta-adrenergic receptors, presumably by phosphorylation of several proteins, but it is unknown which receptor subtypes are involved in human ventricle. We assessed the role of beta(1)- and beta(2)-adrenergic receptors in phosphorylating proteins implicated in ventricular relaxation. Methods and Results-Right ventricular trabeculae, obtained from freshly explanted hearts of patients with dilated cardiomyopathy (n=5) or ischemic cardiomyopathy (n=5), were paced at 60 bpm. After measurement of the contractile and relaxant effects of epinephrine (10 mu mol/L) or zinterol (10 mu mol/L), mediated through beta(2)-adrenergic receptors, and of norepinephrine (10 mu mol/L), mediated through beta(1)-adrenergic receptors, tissues were freeze clamped. We assessed phosphorylation of phospholamban, troponin I, and C-protein, as well as specific phosphorylation of phospholamban at serine 16 and threonine 17, Data did not differ between the 2 disease groups and were therefore pooled. Epinephrine, zinterol, and norepinephrine increased contractile force to approximately the same extent, hastened the onset of relaxation by 15+/-3%, 5+/-2%, and 20+/-3%, respectively, and reduced the time to half-relaxation by 26+/-3%, 21+/-3%, and 37+/-3%. These effects of epinephrine, zinterol, and norepinephrine were associated with phosphorylation (pmol phosphate/mg protein) of phospholamban 14+/-3, 12+/-4, and 12+/-3, troponin I 40+/-7, 33+/-7, and 31+/-6; and C-protein 7.2+/-1.9, 9.3 +/- 1.4, and 7.5 +/- 2.0. Phosphorylation of phospholamban occurred at both Ser16 and Thr17 residues through both beta(1)- and beta(2)-adrenergic receptors. Conclusions-Norepinephrine and epinephrine hasten human ventricular relaxation and promote phosphorylation of implicated proteins through both beta(1)- and beta(2)-adrenergic receptors, thereby potentially improving diastolic function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pimelic acid formation for biotin biosynthesis in Bacillus subtilis has been proposed to involve a cytochrome P450 encoded by the gene biol. We have subcloned bioI and overexpressed the encoded protein, BioI. A purification protocol was developed utilizing ion exchange, gel filtration, and hydroxyapatite chromatography, Investigation of the purified BioI by UV-visible spectroscopy revealed spectral properties characteristic of a cytochrome P450 enzyme. BioI copurifies with acylated Escherichia coil acyl carrier protein (ACP), suggesting that in vivo a fatty acid substrate may be presented to BioI as an acyl-ACP. A combination of electrospray mass spectrometry of the intact acyl-ACP and GCMS indicated a range of fatty acids were bound to the ACP. A catalytically active system has been established employing E. coli flavodoxin reductase and a novel, heterologous flavodoxin as the redox partners for BioI. In this system, BioI cleaves a carbon-carbon bond of an acyl-ACP to generate a pimeloyl-ACP equivalent, from which pimelic acid is isolated after base-catalyzed saponification. A range of free fatty acids have also been explored as potential alternative substrates for BioI, with C16 binding most tightly to the enzyme. These fatty acids are also metabolized to dicarboxylic acids, but with less regiospecificity than is observed with acyl-ACPs. A possible mechanism for this transformation is discussed. These results strongly support the proposed role for BioI in biotin biosynthesis. In addition, the production of pimeloyl-ACP explains the ability of BioI to function as a pimeloyl CoA source in E. coli, which, unlike B. subtilis, is unable to utilize free pimelic acid for biotin production. (C) 2000 Academic Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

p53 is known to repress transcription of a number of genes, but the mechanism of p53 recruitment to these target genes is unknown. The c-myb proto-oncogene product (c-Myb) positively regulates proliferation of immature hematopoietic cells, whereas p53 blocks cell cycle progression. Here, we demonstrate that p53 inhibits c-Myb-induced transcription and transformation by directly binding to c-Myb. The ability of c-Myb to maintain the undifferentiated state of M1 cells was also suppressed by p53. p53 did not affect the ability of c-Myb to bind to DNA but formed a ternary complex with the corepressor mSin3A and c-Myb. Thus, p53 antagonizes c-Myb by recruiting mSin3A to down-regulate specific Myb target genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Many clinical studies have suggested a beneficial effect of GB virus type C (GBV-C) on the course of HIV-1 infection, but the mechanisms involved in such amelioration are not clear. As recent evidence has implicated cellular activation in HIV-1 pathogenesis, we investigated the effect of GBV-C viremia on T-cell activation in early HIV-1 infection. Methods: Forty-eight recently infected HIV-1 patients (23 GBV-C viremic) were evaluated for T-cell counts, expanded immunophenotyping GBV-C RNA detection, and HIV-1 viral load. Nonparametric univariate and multivariate analyses were carried out to identify variables associated with cellular activation, including GBV-C status, HIV-1 viral load, T lymphocyte counts, and CD38 and chemokine (C-C motif) receptor 5 (CCR5) surface expression. Finding: We not only confirmed the positive correlation between HIV-1 viral load and the percentage of T cells positive for CD38(+)CD8(+) but also observed that GBV-C viremic patients had a lower percentage of T cells positive for CD38(+)CD4(+), CD38(+)CD8(+), CCR5(+)CD4(+), and CCR5(+)CD8(+) compared with HIV-1-infected patients who were not GBV-C viremic. In regression models, GBV-C RNA(+) status was associated with a reduction in the CD38 on CD4(+) or CD8(+) T cells and CCR5(+) on CD8(+) T cells, independent of the HIV-1 viral load or CD4(+) and CD8(+) T-cell counts. These results were also supported by the lower expression of CD69 and CD25 in GBV-C viremic patients. Interpretation: The association between GBV-C replication and lower T-cell activation may be a key mechanism involved in the protection conferred by this virus against HIV-1 disease progression to immunodeficiency in HIV-1-infected patients. (C) 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effect of the C-factor and dentin preparation method (DPM) in the bond strength (BS) of a mild self-etch adhesive; the study also observed the SEM superficial aspects of the corresponding smear layer. For purposes of this study, 25 molars (n=5) were used in a bond strength test. The molars were divided into two parts (buccal and lingual): one part received a Class V cavity (C-factor=3) and the other received a flat surface (C-factor=0) with the same bur type (coarse diamond or carbide bur and fine diamond or carbide bur), both within the same dentin depth. Five teeth were prepared with wet 60-grit and 600-grit SiC papers. After restoration with Clearfil SE Bond, microtensile beans (0.8 mm(2)) were prepared and tested after 24 hours in a universal testing machine (0.5 mm/minute). An additional two teeth for each DPM were prepared for SEM evaluation of the smear layer superficial aspects. The BS values were submitted to one-way ANOVA, considering only the DPM (flat surfaces) and two-way ANOVA (C-Factor x DPM, considering only burs) with p=0.05. Although the DPM in the flat surfaces was not significant, the standard deviations of carbide bur-prepared specimens were markedly lower. The BS was significantly lower in cavities. The fine carbide bur presented the most favorable smear layer aspect. It was concluded that different dentin preparation methods could not prevent the adverse effect in bond strength of a high C-factor. A coarse cut carbide bur should be avoided prior to a mild self-etch adhesive, because it adversely affected bond strength. In contrast, a fine cut carbide bur provided the best combination: high bond strength with low variability, which suggests a more reliable bond strength performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Epiphany (TM) Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a `monoblock` effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany (TM) Sealer, the Epiphany (TM) Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm(2), respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey`s post-hoc tests showed significant statistical differences (P < 0.05) to Epiphany (TM) Sealer/Epiphany (TM) Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

J Biol Inorg Chem (2011) 16:881–888 DOI 10.1007/s00775-011-0785-8

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RESUME : Dans ce travail effectué chez le rat adulte, l'excitotoxicité rétinienne est élicitée par injection intravitréenne de NMDA. Les lésions en résultant sont localisées dans la rétine interne. Elles prennent la forme de pycnoses dans la couche des cellules ganglionnaires (corps cellulaires des cellules ganglionnaires et amacrines déplacées) et dans la partie interne de la couche nucléaire interne (cellules amacrines). Cette localisation est liée à la présence de récepteurs au glutamate de type NMDA sur ces cellules. L'activation de ces récepteurs entraîne un influx calcique et l'activation de diverses enzymes (phospholipase A, calpaïnes, calmoduline, synthase d'oxyde nitrique). La signalisation se poursuit en aval en partie par les voies des Mitogen Activated Protein Kinase (MAPK) : ERK, p38, ]NK. Dans les expériences présentées, toutes trois sont activées après l'injection de NMDA. Dans les cascades de signalisation de JNK, trois kinases s'ancrent sur une protéine scaffold. Les MAPKKK phosphorylent MKK4 et MKK7, qui phosphorylent JNK. JNK a de nombreuses cibles nucléaires (dont le facteur de transcription c-Jun) et cytoplasmiques. La voie de JNK est bloquée par l'inhibiteur peptidique D-JNKI-1 en empêchant l'interaction de la kinase avec son substrat. L'inhibiteur est formé de 20 acides aminés du domaine de liaison JBD et de 10 acides aminés de la partie TAT du virus HIV. L'injection intravitréenne de D-JNKI-1 permet une diminution des taux de JNK et c-Jun phosphorylés dans les lysats de rétine. L'effet prépondérant est la restriction importante des altérations histologiques des couches internes de la rétine. L'évaluation par électrorétinogramme met en sus en évidence une sauvegarde de la fonction cellulaire. Ce travail a ainsi permis d'établir la protection morphologique et fonctionnelle des cellules de la rétine interne par inhibition spécifique de la voie de JNK lors d'excitotoxicité. SUMMARY Excitotoxicity in the retina associates with several pathologies like retinal ischemia, traumatic optic neuropathy and glaucoma. In this study, excitotoxicity is elicited by intravitreal NMDA injection in adult rats. Lesions localise in the inner retina. They present as pyknotic cells in the ganglion cell layer (ganglion cells and displaced amacrines) and the inner nuclear layer (amacrine cells). These cells express NMDA glutamate receptors. The receptor activation leads to a calcium flow into the cell and hence enzyme activation (phospholipase, calpains, calmodulin, nitric oxide synthase). The subsequent signaling pathways can involve the Mitogen Activated Protein Kinases (MAPK): ERK, p38 end JNK. These were all activated in our experiments. The signaling cascade organises around several scaffold proteins. The various MAPKKK phosphorylate MKK4 and MKK7, which phosphorylate JNK. JNK targets are of nuclear (c-Jun transcription factor) or cytoplasmic localisation. The peptidic inhibitor D-JNKI-1, 20 amino acids from the JNK binding domain JBD coupled to 10 amino acids of the TAT transporter, disrupts the binding of JNK with its substrate. Intravitreal injection of the inhibitor lowers phosphorylated forms of JNK and c-Jun in retinal extracts. It protects strongly against histological lesions in the inner retina and allows functional rescue.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Humans and mice lacking functional caspase-8 in T cells manifest a profound immunodeficiency syndrome due to defective T cell antigen receptor (TCR)-induced NF-kappaB signaling and proliferation. It is unknown how caspase-8 is activated following T cell stimulation, and what is the caspase-8 substrate(s) that is necessary to initiate T cell cycling. We observe that following TCR ligation, a small portion of total cellular caspase-8 and c-FLIP(L) rapidly migrate to lipid rafts where they associate in an active caspase complex. Activation of caspase-8 in lipid rafts is followed by rapid cleavage of c-FLIP(L) at a known caspase-8 cleavage site. The active caspase.c-FLIP complex forms in the absence of Fas (CD95/APO1) and associates with the NF-kappaB signaling molecules RIP1, TRAF2, and TRAF6, as well as upstream NF-kappaB regulators PKC theta, CARMA1, Bcl-10, and MALT1, which connect to the TCR. The lack of caspase-8 results in the absence of MALT1 and Bcl-10 in the active caspase complex. Consistent with this observation, inhibition of caspase activity attenuates NF-kappaB activation. The current findings define a link among TCR, caspases, and the NF-kappaB pathway that occurs in a sequestered lipid raft environment in T cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

c-Jun N-terminal kinases (SAPK/JNKs) are activated by inflammatory cytokines, and JNK signaling is involved in insulin resistance and beta-cell secretory function and survival. Chronic high glucose concentrations and leptin induce interleukin-1beta (IL-1beta) secretion from pancreatic islets, an event that is possibly causal in promoting beta-cell dysfunction and death. The present study provides evidence that chronically elevated concentrations of leptin and glucose induce beta-cell apoptosis through activation of the JNK pathway in human islets and in insulinoma (INS 832/13) cells. JNK inhibition by the dominant inhibitor JNK-binding domain of IB1/JIP-1 (JNKi) reduced JNK activity and apoptosis induced by leptin and glucose. Exposure of human islets to leptin and high glucose concentrations leads to a decrease of glucose-induced insulin secretion, which was partly restored by JNKi. We detected an interplay between the JNK cascade and the caspase 1/IL-1beta-converting enzyme in human islets. The caspase 1 gene, which contains a potential activating protein-1 binding site, was up-regulated in pancreatic sections and in isolated islets from type 2 diabetic patients. Similarly, cultured human islets exposed to high glucose- and leptin-induced caspase 1 and JNK inhibition prevented this up-regulation. Therefore, JNK inhibition may protect beta-cells from the deleterious effects of high glucose and leptin in diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.