989 resultados para C banding
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The desert locust (Schistocerca gregaria) has been used as material for numerous cytogenetic studies. Its genome size is estimated to be 8.55 Gb of DNA comprised in 11 autosomes and the X chromosome. Its X0/XX sex chromosome determinism therefore results in females having 24 chromosomes whereas males have 23. Surprisingly, little is known about the DNA content of this locust's huge chromosomes. Here, we use the Feulgen Image Analysis Densitometry and C-banding techniques to respectively estimate the DNA quantity and heterochromatin content of each chromosome. We also identify three satellite DNAs using both restriction endonucleases and next-generation sequencing. We then use fluorescent in situ hybridization to determine the chromosomal location of these satellite DNAs as well as that of six tandem repeat DNA gene families. The combination of the results obtained in this work allows distinguishing between the different chromosomes not only by size, but also by the kind of repetitive DNAs that they contain. The recent publication of the draft genome of the migratory locust (Locusta migratoria), the largest animal genome hitherto sequenced, invites for sequencing even larger genomes. S. gregaria is a pest that causes high economic losses. It is thus among the primary candidates for genome sequencing. But this species genome is about 50 % larger than that of L. migratoria, and although next-generation sequencing currently allows sequencing large genomes, sequencing it would mean a greater challenge. The chromosome sizes and markers provided here should not only help planning the sequencing project and guide the assembly but would also facilitate assigning assembled linkage groups to actual chromosomes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chromosomes of Eigenmannia sp. (7 males and 15 females) collected from the Tietê River in Botucatu (SP, Brazil) were examined from gill, kidney and testicular cells. The diploid chromosome number in males was 2n=31 and in females, 2n=32. In both sexes the number of chromosomal arms was 40. The difference in diploid number was due to the fusion of two acrocentrics. Mitotic and meiotic studies suggested that one of the fused acrocentrics was the Y chromosome. The sex-determining mechanism in Eigenmannia sp. could therefore be XX, AA in the female and X, \-YA A in the males. One of the males presented 2n=30 chromosomes due to the occurrence of another fusion of acrocentrics. C-banding analysis of the mitotic chromosomes revealed constitutive heterochromatin in the centromeric regions of all acrocentrics. However, small metacentrics were C-band negative. The YA chromosome is C-band negative except for a small amount of heterochromatin in the centromeric region. The nucleolar organizer region as identified by Ag-staining is present in the interstitial region of chromosome pair No. 10. © 1984 Dr W. Junk Publishers.
Resumo:
The C-banding and silver staining of the chromosomes of the knifefish Apteronotus albifrons (2n=24), demonstrated the presence of constitutive heterochromatin in the centromeric region of every chromosome, except pair 4, where the entire long arm was darkly stained, the silver stain positive nucleolus organizer region (NOR) being embedded in it. © 1981 Birkhüuser Verlag.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Karyotypes are compared of 14 species of Brazilian Columbiformes (family Columbidae): Claravis pretiosa (2n=74), Columba cayennensis (2n=76), Columba picazuro (2n=76), Columba speciosa (2n=76), Columbina minuta (2n=76), Columbina passerina (2n=76), Columbina picui (2n=76), Columbina talpacoti (2n=76), Geotrygon montana (2n=86), Leptotila rufaxilla (2n=76), Leptotila verreauxi (2n=78), Scardafella squammata (2n=78), Uropelia campestris (2n=68) and Zenaida auriculata (2n=76). The macrochromosomes of each species were analysed by conventional Giemsa staining, cytobiometrically and with G-and C-banding. All species studied are characterized by typical bird karyotypes with a few pairs of macrochromosomes and many microchromosomes. The morphology and relative length of the Z chromosome are nearly the same in all species, but the W chromosome shows variation. The G-band patterns of the first pair in Columbiformes show a large positive band distally in the long arm, common to all species of the order. The constitutive heterochromatin is restricted to the centromeres of the macro- and microchromosomes. The W is the most heterochromatic chromosome in all species studied. Studies of relative lengths, arm ratios and G- and C-banding patterns showed that in Columbiformes pairs 3, 4 and 5 are the most stable. The types of rearrangements distinguishing between species vary among the genera: pericentric inversions in Columba; fusions and translocations in Uropelia; centric fissions in Geotrygon; fusions, translocations, para and pericentric inversions in Columbina, Leptotila, Zenaida and Scardafella. On the basis of the karyological findings the phylogenetic relationships of the Brazilian Columbiformes are discussed. © 1984 Dr W. Junk Publishers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The technique of premature chromosome condensation (PCC) has been used primarily to study interphase chromosomes of somatic cells. In this study, mitotic cells were fused to cells from the mouse testes to examine the chromosomes of germ cells. The testes contain various types of cells, both germinal and nongerminal. In these initial studies, four types of PCC morphologies were observed. Chromosome morphology of the PCC and labeling experiments demonstrated the mouse cell origin of various PCC. Attempts were next made to determine the cell types producing the PCC. Spermatogonia, diplotene spermatocytes, secondary spermatocytes and round spermatids are proposed to be the origin of the PCC morphologies. Some PCC could be banded by G and C banding techniques and the mouse chromosomes identified.^ Studies were subsequently undertaken to evaluate this technique as a method of evaluating damage to germ cells. Testicular cells from irradiated mice were fused to mitotic cells and the PCC examined. Both round spermatids and secondary spermatocytes exhibited chromosome damage in the form of chromatid breaks. A linear correlation was found between the dose of irradiation and the number of breaks per cell. This technique may develop into a useful method for evaluating the clastogenic effect of agents on the germ cells. ^