969 resultados para Brain tumor
Resumo:
Dysferlin is a muscle protein involved in cell membrane repair and its deficiency is associated with muscular dystrophy. We describe that dysferlin is also expressed in leaky endothelial cells. In the normal central nervous system (CNS), dysferlin is only present in endothelial cells of circumventricular organs. In the inflamed CNS of patients with multiple sclerosis (MS) or in animals with experimental autoimmune encephalomyelitis, dysferlin reactivity is induced in endothelial cells and the expression is associated with vascular leakage of serum proteins. In MS, dysferlin expression in endothelial cells is not restricted to vessels with inflammatory cuffs but is also present in noninflamed vessels. In addition, many blood vessels with perivascular inflammatory infiltrates lack dysferlin expression in inactive lesions or in the normal-appearing white matter. In vitro, dysferlin can be induced in endothelial cells by stimulation with tumor necrosis factor-alpha. Hence, dysferlin is not only a marker for leaky brain vessels, but also reveals dissociation of perivascular inflammatory infiltrates and blood-brain barrier disturbance in multiple sclerosis.
Resumo:
Bacterial meningitis is characterized by an inflammatory reaction to the invading pathogens that can ultimately lead to sensorineural hearing loss, permanent brain injury, or death. The matrix metalloproteinases (MMPs) and tumor necrosis factor alpha-converting enzyme (TACE) are key mediators that promote inflammation, blood-brain barrier disruption, and brain injury in bacterial meningitis. Doxycycline is a clinically used antibiotic with anti-inflammatory effects that lead to reduced cytokine release and the inhibition of MMPs. Here, doxycycline inhibited TACE with a 50% inhibitory dose of 74 microM in vitro and reduced the amount of tumor necrosis factor alpha released into the cerebrospinal fluid by 90% in vivo. In an infant rat model of pneumococcal meningitis, a single dose of doxycycline (30 mg/kg) given as adjuvant therapy in addition to ceftriaxone 18 h after infection significantly reduced the mortality, the blood-brain barrier disruption, and the extent of cortical brain injury. Adjuvant doxycycline (30 mg/kg given subcutaneously once daily for 4 days) also attenuated hearing loss, as assessed by auditory brainstem response audiometry, and neuronal death in the cochlear spiral ganglion at 3 weeks after infection. Thus, doxycycline, probably as a result of its anti-inflammatory properties, had broad beneficial effects in the brain and the cochlea and improved survival in this model of pneumococcal meningitis in infant rats.
Resumo:
We report a male term newborn presenting with a congenital macrocephaly 3.5 standard deviations above the median, with a wide and tense anterior fontanel, splayed calvarial sutures, and muscular hypotonia. Antenatal head circumferences were repeatedly below the median. A postnatal head ultrasound showed a large right intracerebral mass with right lateral ventricle compression, right temporal horn dilation, and right frontal horn enlargement with lateral displacement. Additional imaging by computed tomography scan and magnetic resonance imaging was performed. A decompression was performed and histology, immunohistochemistry, and molecular biology supported the diagnosis of a primitive neuroectodermal tumor. A MYCN gene amplification assay remained negative. The incidence of neonatal brain tumors is between 1.4 and 4.1/100,000 live births. Their most common presentation is macrocephaly, hydrocephalus, stillbirth, or diagnosis by pre- or postnatal imaging. Although hydrocephaly and intra- or extracranial hemorrhage are the most frequent causes of congenital macrocephaly, this should be initially investigated by head ultrasound. A suspected malignancy will be confirmed by histopathology, immunohistochemistry, and molecular biology.
Resumo:
Bacteriolytic antibiotics cause the release of bacterial components that augment the host inflammatory response, which in turn contributes to the pathophysiology of brain injury in bacterial meningitis. In the present study, antibiotic therapy with nonbacteriolytic daptomycin was compared with that of bacteriolytic ceftriaxone in experimental pneumococcal meningitis, and the treatments were evaluated for their effects on inflammation and brain injury. Eleven-day-old rats were injected intracisternally with 1.3 x 10(4) +/- 0.5 x 10(4) CFU of Streptococcus pneumoniae serotype 3 and randomized to therapy with ceftriaxone (100 mg/kg of body weight subcutaneously [s.c.]; n = 55) or daptomycin (50 mg/kg s.c.; n = 56) starting at 18 h after infection. The cerebrospinal fluid (CSF) was assessed for bacterial counts, matrix metalloproteinase-9 levels, and tumor necrosis factor alpha levels at different time intervals after infection. Cortical brain damage was evaluated at 40 h after infection. Daptomycin cleared the bacteria more efficiently from the CSF than ceftriaxone within 2 h after the initiation of therapy (log(10) 3.6 +/- 1.0 and log(10) 6.3 +/- 1.4 CFU/ml, respectively; P < 0.02); reduced the inflammatory host reaction, as assessed by the matrix metalloproteinase-9 concentration in CSF 40 h after infection (P < 0.005); and prevented the development of cortical injury (cortical injury present in 0/30 and 7/28 animals, respectively; P < 0.004). Compared to ceftriaxone, daptomycin cleared the bacteria from the CSF more rapidly and caused less CSF inflammation. This combined effect provides an explanation for the observation that daptomycin prevented the development of cortical brain injury in experimental pneumococcal meningitis. Further research is needed to investigate whether nonbacteriolytic antibiotic therapy with daptomycin represents an advantageous alternative over current bacteriolytic antibiotic therapies for the treatment of pneumococcal meningitis.
Resumo:
The present study was performed to evaluate the role of matrix metalloproteinases (MMP) in the pathogenesis of the inflammatory reaction and the development of neuronal injury in a rat model of bacterial meningitis. mRNA encoding specific MMPs (MMP-3, MMP-7, MMP-8, and MMP-9) and the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) were significantly (P < 0.04) upregulated, compared to the beta-actin housekeeping gene, in cortical homogenates at 20 h after infection. In parallel, concentrations of MMP-9 and TNF-alpha in cerebrospinal fluid (CSF) were significantly increased in rats with bacterial meningitis compared to uninfected animals (P = 0.002) and showed a close correlation (r = 0.76; P < 0. 001). Treatment with a hydroxamic acid-type MMP inhibitor (GM6001; 65 mg/kg intraperitoneally every 12 h) beginning at the time of infection significantly lowered the MMP-9 (P < 0.02) and TNF-alpha (P < 0.02) levels in CSF. Histopathology at 25.5 +/- 5.7 h after infection showed neuronal injury (median [range], 3.5% [0 to 17.5%] of the cortex), which was significantly (P < 0.01) reduced to 0% (0 to 10.8%) by GM6001. This is the first report to demonstrate that MMPs contribute to the development of neuronal injury in bacterial meningitis and that inhibition of MMPs may be an effective approach to prevent brain damage as a consequence of the disease.
Resumo:
Peptide receptors are often overexpressed in tumors, and they may be targeted in vivo. We evaluated neuropeptide Y (NPY) receptor expression in 131 primary human brain tumors, including gliomas, embryonal tumors, meningiomas, and pituitary adenomas, by in vitro receptor autoradiography using the 125I-labeled NPY receptor ligand peptide YY in competition with NPY receptor subtype-selective analogs. Receptor functionality was investigated in selected cases using [35S]GTPgammaS-binding autoradiography. World Health Organization Grade IV glioblastomas showed a remarkably high expression of the NPY receptor subtype Y2 with respect to both incidence (83%) and density (mean, 4,886 dpm/mg tissue); astrocytomas World Health Organization Grades I to III and oligodendrogliomas also exhibited high Y2 incidences but low Y2 densities. In glioblastomas, Y2 agonists specifically stimulated [35S]GTPgammaS binding, suggesting that tumoral Y2 receptors were functional. Furthermore, nonneoplastic nerve fibers containing NPY peptide were identified in glioblastomas by immunohistochemistry. Medulloblastomas, primitive neuroectodermal tumors of the CNS, and meningiomas expressed Y1 and Y2 receptor subtypes in moderate incidence and density. In conclusion, Y2 receptors in glioblastomas that are activated by NPY originating from intratumoral nerve fibers might mediate functional effects on the tumor cells. Moreover, identification of the high expression of NPY receptors in high-grade gliomas and embryonal brain tumors provides the basis for in vivo targeting.
Resumo:
BACKGROUND: Tumor bed stereotactic radiosurgery (SRS) after resection of brain metastases is a new strategy to delay or avoid whole-brain irradiation (WBRT) and its associated toxicities. This retrospective study analyzes results of frameless image-guided linear accelerator (LINAC)-based SRS and stereotactic hypofractionated radiotherapy (SHRT) as adjuvant treatment without WBRT. MATERIALS AND METHODS: Between March 2009 and February 2012, 44 resection cavities in 42 patients were treated with SRS (23 cavities) or SHRT (21 cavities). All treatments were delivered using a stereotactic LINAC. All cavities were expanded by ≥ 2 mm in all directions to create the clinical target volume (CTV). RESULTS: The median planning target volume (PTV) for SRS was 11.1 cm(3). The median dose prescribed to the PTV margin for SRS was 17 Gy. Median PTV for SHRT was 22.3 cm(3). The fractionation schemes applied were: 4 fractions of 6 Gy (5 patients), 6 fractions of 4 Gy (6 patients) and 10 fractions of 4 Gy (10 patients). Median follow-up was 9.6 months. Local control (LC) rates after 6 and 12 months were 91 and 77 %, respectively. No statistically significant differences in LC rates between SRS and SHRT treatments were observed. Distant brain control (DBC) rates at 6 and 12 months were 61 and 33 %, respectively. Overall survival (OS) at 6 and 12 months was 87 and 63.5 %, respectively, with a median OS of 15.9 months. One patient treated by SRS showed symptoms of radionecrosis, which was confirmed histologically. CONCLUSION: Frameless image-guided LINAC-based adjuvant SRS and SHRT are effective and well tolerated local treatment strategies after resection of brain metastases in patients with oligometastatic disease.
Resumo:
With respect to localization, oligodendrogliomas are characterized by a marked preponderance of the cerebral hemispheres. Outside these typical sites, any tumor histopathologically reminiscent of oligodendroglioma a priori is likely to represent one of its morphological mimics, including clear cell ependymoma, neurocytoma, pilocytic astrocytoma or glioneuronal tumors. This is particularly relevant as several of the latter are in principle curable by surgery. Among extrahemispherical sites, bona fide oligodendroglioma - as characterized by loss of heterozygosity (LOH) of chromosome arms 1p and 19q - so far has not been documented to occur in the brain stem. Here, we report the case of a 55-year-old female patient with an anaplastic oligodendroglioma (WHO grade III) of the brain stem and cerebellum diagnosed by stereotactic biopsy and featuring combined LOH of 1p and 19q. A morphological peculiarity was a population of interspersed tumor giant cells, a phenomenon that has been referred to as polymorphous oligodendroglioma. Our findings confirm the notion that - although very infrequently - true oligodendrogliomas do occur in the infratentorial compartment.
Resumo:
Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.
Resumo:
Primary brain neoplasms and metastases to the brain are generally resistant to systemic chemotherapy. The purpose of theses studies was to determine the mechanism(s) for this resistance. We have developed a model to study the biology of brain metastasis by injecting metastatic K1735 melanoma cells into the carotid artery of syngeneic C3H/HeN or nude mice. The resulting brain lesions are produced in the parenchyma of the brain. Mice with subcutaneous or brain melanoma lesions were treated intravenously with doxorubicin (DXR) (7 mg/kg). The s.c. lesions regressed in most of the mice whereas no therapeutic benefits were produced in mice with brain metastases. The intravenous injection of sodium fluorescine revealed that the blood-brain barrier (BBB) is intact in and around brain metastases smaller than 0.2 mm$\sp2$ but not in larger lesions, implying that the BBB is not a major obstacle for chemotherapy of brain metastases.^ Western blot and FACS analyses revealed that K1735 melanoma brain metastases expressed high levels of P-glycoprotein (P-gp) as compared to s.c. tumors or in vitro cultures. Similarly, K1735 cells from brain metastases expressed higher levels of mdrl mRNA. This increased expression of mdrl was due to adaptation to the local brain environment. We base this conclusion on the results of two studies. First, K1735 cells from brain metastases cultured for 7 days lost the high mdrl expression. Second, in crossover experiments K1735 cells from s.c. tumors (low mdrl expression) implanted into the brain exhibited high levels of mdrl expression whereas cells from brain metastases implanted s.c. lost the high level mdrl expression.^ To investigate the mechanism by which the brain environment upregulates mdrl expression of the K1735 cells we first studied the regulation of P-gp in brain endothelial cells. Since astrocytes are closely linked with the BBB we cocultured brain endothelial cells for 3 days with astrocytes. These endothelial cells expressed high levels of mdrl mRNA and protein whereas endothelial cells cocultured with endothelial cells or fibroblasts did not. We next cocultured K1735 melanoma cells with astrocytes. Here again, astrocytes (but not fibroblasts or tumor cells) uprelated the mdrl expression in K1735 tumor cells. This upregulation inversely correlated with intracellular drug accumulation and sensitivity to DXR.^ The data conclude that the resistance of melanoma brain metastases to chemotherapy is not due to an intact BBB but to the upregulation of the mdrl gene by the organ microenvironment, i.e., the astrocytes. This epigenetic mediated resistance to chemotherapy has wide implications for the therapy of brain metastases. ^
Resumo:
Epidemiologic case-control studies of small groups of childhood nervous system tumor patients have suggested that parental employment in occupations with exposure to hydrocarbons is a risk factor for disease. The main focus of this case-control study was to assess the paternal occupation at the time of birth of offspring who later developed childhood intracranial and spinal tumors. All children under 15 years of age dying of such tumors in Texas, during the period 1964-1980, were selected as cases. Disease and demographic data were abstracted from death certificates. The birth certificate for each child of the final group of 499 cases was located and parental occupation information, as well as demographic and obstetric data, were collected. The comparison group consisted of a random sample from all Texas live births with the same birth year, race and sex distribution as the cases.^ The paternal occupations were categorized into broad classifications of those involving hydrocarbon exposure versus those that did not, based on the occupation criteria used in the previous studies. Odds ratios did not indicate any increased risk associated with general paternal hydrocarbon exposure in the workplace. In prior studies, increased risk estimates were detected with narrower groups of occupations involving exposure to hydrocarbon materials. The data from this study were classified according to these groups, and again, no increased risks were indicated except for a statistically insignificant but elevated odds ratio for fathers who were paper and pulp mill workers.^ Odds ratios were calculated for specific occupations and industries previously implicated as risk factors. Significantly associated odds ratios (OR) were detected for electricians (OR = 3.5), especially those working for construction companies (OR = 10.0), for employment in the printing occupations (OR = 4.5), particularly graphic arts workers (OR = 21.9), and in the electronics and electronic machinery industries (OR = 3.5). Analysis of the petroleum refining and chemical industries, which were not found in previous study populations, revealed significantly elevated odds ratios of 3.0 for occupations with probable heavy exposure to chemicals and petroleum compounds and 10.0 for salesmen of chemical products. ^
Resumo:
Pneumococcal meningitis (PM) results in high mortality rates and long-lasting neurological deficits. Hippocampal apoptosis and cortical necrosis are histopathological correlates of neurofunctional sequelae in rodent models and are frequently observed in autopsy studies of patients who die of PM. In experimental PM, inhibition of matrix metalloproteinases (MMPs) and/or tumor necrosis factor (TNF)-converting enzyme (TACE) has been shown to reduce brain injury and the associated impairment of neurocognitive function. However, none of the compounds evaluated in these studies entered clinical development. Here, we evaluated two second-generation MMP and TACE inhibitors with higher selectivity and improved oral availability. Ro 32-3555 (Trocade, cipemastat) preferentially inhibits collagenases (MMP-1, -8, and -13) and gelatinase B (MMP-9), while Ro 32-7315 is an efficient inhibitor of TACE. PM was induced in infant rats by the intracisternal injection of live Streptococcus pneumoniae. Ro 32-3555 and Ro 32-7315 were injected intraperitoneally, starting at 3 h postinfection. Antibiotic (ceftriaxone) therapy was initiated at 18 h postinfection, and clinical parameters (weight, clinical score, mortality rate) were recorded. Myeloperoxidase activities, concentrations of cytokines and chemokines, concentrations of MMP-2 and MMP-9, and collagen concentrations were measured in the cerebrospinal fluid. Animals were sacrificed at 42 h postinfection, and their brains were assessed by histomorphometry for hippocampal apoptosis and cortical necrosis. Both compounds, while exhibiting disparate MMP and TACE inhibitory profiles, decreased hippocampal apoptosis and cortical injury. Ro 32-3555 reduced mortality rates and cerebrospinal fluid TNF, interleukin-1β (IL-1β) and collagen levels, while Ro 32-7315 reduced weight loss and cerebrospinal fluid TNF and IL-6 levels.
Resumo:
Perinatal brain damage is associated not only with hypoxic-ischemic insults but also with intrauterine inflammation. A combination of antenatal inflammation and asphyxia increases the risk of cerebral palsy >70 times. The aim of the present study was to determine the effect of intracisternal (i.c.) administration of endotoxin [lipopolysaccharides (LPS)] on subsequent hypoxic-ischemic brain damage in neonatal rats. Seven-day-old Wistar rats were subjected to i.c. application of NaCl or LPS (5 microg/pup). One hour later, the left common carotid artery was exposed through a midline neck incision and ligated with 6-0 surgical silk. After another hour of recovery, the pups were subjected to a hypoxic gas mixture (8% oxygen/92% nitrogen) for 60 min. The animals were randomized to four experimental groups: 1) sham control group, left common carotid artery exposed but not ligated (n = 5); 2) LPS group, subjected to i.c. application of LPS (n = 7); 3) hypoxic-ischemic study group, i.c. injection of NaCl and exposure to hypoxia after ligation of the left carotid artery (n = 17); or 4) hypoxic-ischemic/LPS study group, i.c. injection of LPS and exposure to hypoxia after ligation of the left carotid artery (n = 19). Seven days later, neonatal brains were assessed for neuronal cell damage. In a second set of experiments, rat pups received an i.c. injection of LPS (5 microg/pup) and were evaluated for tumor necrosis factor-alpha expression by immunohistochemistry. Neuronal cell damage could not be observed in the sham control or in the LPS group. In the hypoxic-ischemic/LPS group, neuronal injury in the cerebral cortex was significantly higher than in animals that were subjected to hypoxia/ischemia after i.c. application of NaCl. Injecting LPS intracisternally caused a marked expression of tumor necrosis factor-alpha in the leptomeninges. Applying LPS intracisternally sensitizes the immature rat brain to a subsequent hypoxic-ischemic insult.
Resumo:
To evaluate the spectrum and regulation of matrix metalloproteinases (MMPs) in bacterial meningitis (BM), concentrations of MMP-2, MMP-3, MMP-8, and MMP-9 and endogenous inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were measured in the cerebrospinal fluid (CSF) of 27 children with BM. MMP-8 and MMP-9 were detected in 91% and 97%, respectively, of CSF specimens from patients but were not detected in control patients. CSF levels of MMP-9 were higher (P<.05) in 5 patients who developed hearing impairment or secondary epilepsy than in those who recovered without neurological deficits. Levels of MMP-9 correlated with concentrations of TIMP-1 (P<.001) and tumor necrosis factor-alpha (P=.03). Repeated lumbar punctures showed that levels of MMP-8 and MMP-9 were regulated independently and did not correlate with the CSF cell count. Therefore, MMPs may derive not only from granulocytes infiltrating the CSF space but also from parenchymal cells of the meninges and brain. High concentrations of MMP-9 are a risk factor for the development of postmeningitidal neurological sequelae.
Resumo:
Purpose: Results from previous studies indicate that children with brain tumors (BT) might present with cognitive problems at diagnosis and thus before the start of any medical treatment. The question remains whether these problems are due to the underlying tumor itself or due to the high level of emotional and physical stress which is involved at diagnosis of a malignant disorder. All children with a de novo oncological diagnosis not involving the central nervous systems (CNS) are usually exposed to a comparable level of distress. However, patients with cancer not involving the CNS are not expected to show disease-related cognitive problems. Thus they serve as a well-balanced control group (CG) to help distinguish between the probable causes of the effect. Method: In a pilot study we analyzed an array of cognitive functions in 16 children with BT and 17 control patients. In both groups, tests were administered in-patient at diagnosis before any therapeutic intervention such as surgery, chemotherapy od irradiation. Results: Performance of children with BT was comparable to that of CG patients in the areas of intelligence, perceptual reasoning, verbal comprehension, working memory, and processing speed. In contrast, however, BT patients performded significantly worse in verbal memory and attention. Conclusion: Memory and attention seem to be the most vulnerable funstions affected by BT, with other functions being preserved at the time of diagnosis. It ist to be expected that this vulnerability might exacerbate the cognitive decline after chemotherapy and radiation treatment - known to impair intellectual performance. The findings highlight the need of early cognitive assessments in children with BT in order to introduce cognitive training as early as possible to minimize or even prevent cognitive long-term sequelae. This might improve long-term academic and professional outcome of these children, but especially helps their return to school after hospitalization.