954 resultados para Boundary value problems on manifolds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for the reconstruction of a stationary three-dimensional temperature field, from Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L 2-space is include

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a survey of results obtained by the authors on the geometry of connections with totally skew-symmetric torsion on the following manifolds: almost complex manifolds with Norden metric, almost contact manifolds with B-metric and almost hypercomplex manifolds with Hermitian and anti-Hermitian metric.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Недю Иванов Попиванов, Алексей Йорданов Николов - През 1952 г. М. Протър формулира нови гранични задачи за вълновото уравнение, които са тримерни аналози на задачите на Дарбу в равнината. Задачите са разгледани в тримерна област, ограничена от две характеристични конуса и равнина. Сега, след като са минали повече от 50 години, е добре известно, че за безброй гладки функции в дясната страна на уравнението тези задачи нямат класически решения, а обобщеното решение има силна степенна особеност във върха на характеристичния конус, която е изолирана и не се разпространява по конуса. Тук ние разглеждаме трета гранична задача за вълновото уравнение с младши членове и дясна страна във формата на тригонометричен полином. Дадена е по-нова от досега известната априорна оценка за максимално възможната особеност на решенията на тази задача. Оказва се, че при по-общото уравнение с младши членове възможната сингулярност е от същия ред като при чисто вълновото уравнение.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agency problems that helped cause the banking crisis in the United States in the 1980s impacted hotel appraisals competed for the Resolution Trust Corporation (RTC). Lower appraised values would help make more bids acceptable, helping to sell more assets quickly. The results indicate appraised hotel values were much lower than sales prices in states with a high number of bank failures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no agreement between experimental researchers whether the point where a granular material responds with a large change of stresses, strains or excess pore water pressure given a prescribed small input of some of the same variables defines a straight line or a curve in the stress space. This line, known as the instability line, may also vary in shape and position if the onset of instability is measured from drained or undrained triaxial tests. Failure of granular materials, which might be preceded by the onset of instability, is a subject that the geotechnical engineers have to deal with in the daily practice, and generally speaking it is associated to different phenomena observed not only in laboratory tests but also in the field. Examples of this are the liquefaction of loose sands subjected to undrained loading conditions and the diffuse instability under drained loading conditions. This research presents results of DEM simulations of undrained triaxial tests with the aim of studying the influence of stress history and relative density on the onset of instability in granular materials. Micro-mechanical analysis including the evolution of coordination numbers and fabric tensors is performed aiming to gain further insight on the particle-scale interactions that underlie the occurrence of this instability. In addition to provide a greater understanding, the results presented here may be useful as input for macro-scale constitutive models that enable the prediction of the onset of instability in boundary value problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the relations of shift equivalence and strong shift equivalence for matrices over a ring $\mathcal{R}$, and establish a connection between these relations and algebraic K-theory. We utilize this connection to obtain results in two areas where the shift and strong shift equivalence relations play an important role: the study of finite group extensions of shifts of finite type, and the Generalized Spectral Conjectures of Boyle and Handelman for nonnegative matrices over subrings of the real numbers. We show the refinement of the shift equivalence class of a matrix $A$ over a ring $\mathcal{R}$ by strong shift equivalence classes over the ring is classified by a quotient $NK_{1}(\mathcal{R}) / E(A,\mathcal{R})$ of the algebraic K-group $NK_{1}(\calR)$. We use the K-theory of non-commutative localizations to show that in certain cases the subgroup $E(A,\mathcal{R})$ must vanish, including the case $A$ is invertible over $\mathcal{R}$. We use the K-theory connection to clarify the structure of algebraic invariants for finite group extensions of shifts of finite type. In particular, we give a strong negative answer to a question of Parry, who asked whether the dynamical zeta function determines up to finitely many topological conjugacy classes the extensions by $G$ of a fixed mixing shift of finite type. We apply the K-theory connection to prove the equivalence of a strong and weak form of the Generalized Spectral Conjecture of Boyle and Handelman for primitive matrices over subrings of $\mathbb{R}$. We construct explicit matrices whose class in the algebraic K-group $NK_{1}(\mathcal{R})$ is non-zero for certain rings $\mathcal{R}$ motivated by applications. We study the possible dynamics of the restriction of a homeomorphism of a compact manifold to an isolated zero-dimensional set. We prove that for $n \ge 3$ every compact zero-dimensional system can arise as an isolated invariant set for a homeomorphism of a compact $n$-manifold. In dimension two, we provide obstructions and examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of the solution. Based on our a posteriori error bound we design and implement the corresponding adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement. The theoretical results are illustrated by a series of numerical experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel finite element formulation that significantly reduces the number of degrees of freedom necessary to obtain reasonably accurate approximations of the low-frequency component of the deformation in boundary-value problems. In contrast to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie algebra—the logarithmic space—of the deformation function. We construct a deformation function based on an interpolation of transformations at the nodes of the finite element. In the case of the geometrically exact planar Bernoulli beam element presented in this work, these transformation functions at the nodes are given as rotations. However, due to an intrinsic coupling between rotational and translational components of the deformation function, the formulation provides for a good approximation of the deflection of the beam, as well as of the resultant forces and moments. As both the translational and the rotational components of the deformation function are defined on the logarithmic space, we propose to refer to the novel approach as the “Logarithmic finite element method”, or “LogFE” method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several numerical methods for boundary value problems use integral and differential operational matrices, expressed in polynomial bases in a Hilbert space of functions. This work presents a sequence of matrix operations allowing a direct computation of operational matrices for polynomial bases, orthogonal or not, starting with any previously known reference matrix. Furthermore, it shows how to obtain the reference matrix for a chosen polynomial base. The results presented here can be applied not only for integration and differentiation, but also for any linear operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss the mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. The Schrödinger equation and Heisenberg uncertainty principles are structured within local fractional operators.