986 resultados para Bone breaking strength


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporosis (OP) is one of the most prevalent bone diseases worldwide with bone fracture the major clinical consequence. The effect of OP on fracture repair is disputed and although it might be expected for fracture repair to be delayed in osteoporotic individuals, a definitive answer to this question still eludes us. The aim of this study was to clarify the effect of osteoporosis in a rodent fracture model. OP was induced in 3-month-old rats (n = 53) by ovariectomy (OVX) followed by an externally fixated, mid-diaphyseal femoral osteotomy at 6 months (OVX group). A further 40 animals underwent a fracture at 6 months (control group). Animals were sacrificed at 1, 2, 4, 6, and 8 weeks postfracture with outcome measures of histology, biomechanical strength testing, pQCT, relative BMD, and motion detection. OVX animals had significantly lower BMD, slower fracture repair (histologically), reduced stiffness in the fractured femora (8 weeks) and strength in the contralateral femora (6 and 8 weeks), increased body weight, and decreased motion. This study has demonstrated that OVX is associated with decrease in BMD (particularly in trabecular bone) and a reduction in the mechanical properties of intact bone and healing fractures. The histological, biomechanical, and radiological measures of union suggest that OVX delayed fracture healing. (C) 2007 Orthopaedic Research Society. Published by Wiley Periodicals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that the method used to mix the liquid monomer and powder of PMMA bone cement influences the quality of the cement that is used in total joint replacements. Mixing theory indicates that the interaction between the liquid monomer and the powder is affected by a number of parameters, such as cement viscosity and degree of agitation, with this knowledge utilized in the design of cement mixing devices. Therefore, the objectives of this study were to: (i) obtain information on the interaction of the liquid monomer and the powder in the case of an PMMA bone cement, (ii) show how this knowledge can be applied to the design of an automated cement mixing device, and (iii) compare the porosity, bending modulus, and bending strength of one commercially-available cement prepared using the automated mixer and prepared using a conventional mixer that is in current clinical use. Experimental data indicated that increasing the velocity and decreasing the viscosity of the systems produced cement that improved mechanical properties, which may contribute to better mechanical integrity and, hence, reduced tendency for aseptic loosening, of cemented hip implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental use of statins as stimulators of bone formation suggests they may have widespread applicability in the field of orthopaedics. With their combined effects on osteoblasts and osteoclasts, statins have the potential to enhance resorption of synthetic materials and improve bone ingrowth. In this study, the effect of oral and local administration of simvastatin to a 0 tricalcium phosphate (beta TCP)-filled defect around an implant was compared with recombinant human bone morphogenetic protein 2 (rhBMP2). On hundred and sixty-two Sprague-Dawley rats were assigned to treatment groups: local application of 0.1, 0.9 or 1.7 mg of simvastatin, oral simvastatin at 5, 10 or 50 mg kg(-1) day(-1) for 20 days, local delivery of I or 10 mu g of rhBMP2, or control. At 6 weeks rhBMP2 increased serum tartrate-resistant acid phosphatase 5b levels and reduced PTCP area fraction, particle size and number compared with control, suggesting increased osteoclast activity. There was reduced stiffness and increased mechanical strength with this treatment. Local simvastatin resulted in a decreased mineral apposition rate at 6 weeks and increased fibrous area fraction, PTCP area fraction, particle size and number at 26 weeks. Oral simvastatin had no effect compared with control. Local application of rhBMP2 increased resorption and improved mechanical strength whereas simvastatin was detrimental to healing. Oral simvastatin was ineffective at promoting either ceramic resorption or bone formation. The effect of statins on the repair of bone defects with graft substitute materials is influenced by its bioavailability. Thus, further studies on the optimal delivery system are needed. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently available synthetic bone substitutes perform poorly compared to autograft. It is hoped that by adding osteogenic growth factors to the materials, new bone formation could be increased and the clinical outcome improved. In this study, IGF-1, bFGF and TGFbeta1, alone and in combination, were absorbed onto a carrier of P-tricalcium phosphate (PTCP) and implanted into a defect around a hydroxyapatite-coated, stainless steel implant in the proximal tibia of rat in a model of revision arthroplasty. Animals were sacrificed at 6 and 26 weeks for routine histology and histomorphometry and mechanical push out tests. The results show that only bFGF had a significant effect on ceramic resorption. The groups that received bFGF and bFGF in combination with TGFbeta1 had smaller and fewer betaTCP particles remaining in the defect at 6 and 26 weeks. No growth factor combination significantly enhanced new bone formation or the mechanical strength of the implant. These results indicate that, of the growth factors tested, only bFGF had any beneficial effect on the host response to the implant, perhaps by delaying osteoblast differentiation and thereby prolonging osteoclast access to the ceramic. (C) 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To examine the association between fruit and vegetable (FV) consumption and muscle strength and power in an adolescent population. Methods: We conducted a cross-sectional analysis among 1019 boys and 998 girls, aged 12 and 15 years, who participated in The Young Hearts Project. FV consumption (excluding potatoes) was assessed by 7-d diet history. Grip strength and jump power was assessed with a dynamometer and Jump-MD meter, respectively. Associations between FV consumption and strength and power were assessed by regression modelling. Results: Boys and girls with the highest FV intakes (>237.71 g/d and >267.57 g/d, respectively, based on the highest tertile) had significantly higher jump power than those with the lowest intakes (<135.09 g/d and <147.43 g/d, respectively), after adjustment for confounding factors. Although girls with the highest FV intakes had higher grip strength than those with the lowest intakes, no significant independent associations were evident between FV intake and grip strength in boys or girls. Similar findings were observed when FV were analysed separately.Conclusions: Higher FV consumption in this group of adolescents was positively associated with muscle power. There was no independent association between higher FV consumption and muscle strength. Intervention studies are required to determine whether muscle strength and power can be improved through increased FV consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p < 0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (< 20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of carboxyl functionalised multi-walled carbon nanotube (MWCNT-COOH) into a leading proprietary grade orthopaedic bone cement (Simplex PTM) at 0.1 wt% has been investigated. Resultant static and fatigue mechanical properties, in addition to thermal and polymerisation properties, have been determined. Significant improvements (p 0.001) in bending strength (42%), bending modulus (55%) and fracture toughness (22%) were demonstrated. Fatigue properties were improved (p 0.001), with mean number of cycles to failure and fatigue performance index being increased by 64% and 52%, respectively. Thermal necrosis index values at 44C and 55C were significantly reduced (p 0.001) (28% and 27%) versus the control. Furthermore, the onset of polymerisation increased by 58% (p < 0.001), as did the duration of the polymerisation reaction (52%). Peak energy during polymerisation increased by 672% (p < 0.001). Peak area of polymerisation increased by 116% (p < 0.001) indicating that the incorporation of MWCNT-COOH reduced the rate of polymerisation significantly. A non-significant reduction (8%) in percentage monomer conversion was also recorded. Raman spectroscopy clearly showed that the addition of MWCNT-COOH increased the ratio between normalised intensities of the G-Band and D-Band (IG/ID), and also increased the theoretical compressive strain (1.72%) exerted on the MWCNT-COOH by the Simplex PTM cement matrix. Therefore, demonstrating a level of chemical interactivity between the MWCNT-COOH and the Simplex PTM bone cement exists and consequently a more effective mechanism for successful transfer of mechanical load. The extent of homogenous dispersion of the MWCNT-COOH throughout the bone cement was determined using Raman mapping. Ke

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hip replacement surgery is amongst the most common orthopaedic operations performed in the UK. Aseptic loosening is responsible for 40% of hip revision procedures. Aseptic loosening is a result of cement mantle fatigue. The aim of the current study is to analyse the effect of nanoscale Graphene Oxide (GO) on the mechanical properties of orthopaedic bone cement. Study Design A experimental thermal and mechanical analysis was conducted in a laboratory set up conforming to international standards for bone cement testing according to ISO 5583. Testing was performed on control cement samples of Colacryl bone cement, and additional samples reinforced with variable wt% of Graphene Oxide containing composites – 0.1%, 0.25%, 0.5% and 1.0% GO loading. Pilot Data Porosity demonstrated a linear relationship with increasing wt% loading compared to control (p<0.001). Thermal characterisation demonstrated maximal temperature during polymerization, and generated exotherm were inversely proportional to w%t loading (p<0.05) Fatigue strength performed on the control and 0.1 and 0.25%wt loadings of GO demonstrate increased average cycles to failure compared to control specimens. A right shift of the Weibull curve was demonstrated for both wt% available currently. Logistic regression analysis for failure demonstrated significant increases in number of cycles to failure for both specimens compared to a control (p<0.001). Forward Plan Early results convey positive benefits at low wt% loadings of GO containing bone cement. Study completion and further analysis is required in order to elude to the optimum w%t of GO which conveys the greatest mechanical advantage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the feasibility of manufacturing hydroxyapatite (HA)-based scaffolds using 3D printing technology by incorporating different binding additives, such as maltodextrin and polyvinyl alcohol (PVOH), into the powder formulation. Different grades of PVOH were evaluated in terms of their impact on the printing quality. Results showed that scaffolds with high architectural accuracy in terms of the design and excellent green compressive strength were obtained when the PVOH (high viscosity) was used as the binding additive for HA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNLABELLED: Trabecular bone score (TBS) seems to provide additive value on BMD to identify individuals with prevalent fractures in T1D. TBS did not significantly differ between T1D patients and healthy controls, but TBS and HbA1c were independently associated with prevalent fractures in T1D. A TBS cutoff <1.42 reflected prevalent fractures with 91.7 % sensitivity and 43.2 % specificity. INTRODUCTION: Type 1 diabetes (T1D) increases the risk of osteoporotic fractures. TBS was recently proposed as an indirect measure of bone microarchitecture. This study aimed at investigating the TBS in T1D patients and healthy controls. Associations with prevalent fractures were tested. METHODS: One hundred nineteen T1D patients (59 males, 60 premenopausal females; mean age 43.4 ± 8.9 years) and 68 healthy controls matched for gender, age, and body mass index (BMI) were analyzed. The TBS was calculated in the lumbar region, based on two-dimensional (2D) projections of DXA assessments. RESULTS: TBS was 1.357 ± 0.129 in T1D patients and 1.389 ± 0.085 in controls (p = 0.075). T1D patients with prevalent fractures (n = 24) had a significantly lower TBS than T1D patients without fractures (1.309 ± 0.125 versus 1.370 ± 0.127, p = 0.04). The presence of fractures in T1D was associated with lower TBS (odds ratio = 0.024, 95 % confidence interval (CI) = 0.001-0.875; p = 0.042) but not with age or BMI. TBS and HbA1c were independently associated with fractures. The area-under-the curve (AUC) of TBS was similar to that of total hip BMD in discriminating T1D patients with or without prevalent fractures. In this set-up, a TBS cutoff <1.42 discriminated the presence of fractures with a sensitivity of 91.7 % and a specificity of 43.2 %. CONCLUSIONS: TBS values are lower in T1D patients with prevalent fractures, suggesting an alteration of bone strength in this subgroup of patients. Reliable TBS cutoffs for the prediction of fracture risk in T1D need to be determined in larger prospective studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Background: Previous studies have implied that weight-bearing, intense and prolonged physical activities optimize bone accretion during the grow^ing years. The majority of past inquiries have used dual-energy X-ray absorptiometry (DXA) to examine bone strength and hand-wrist radiography to determine skeletal maturity in children. Recently, quantitative ultrasound (QUS) technologies have been developed to examine bone properties and skeletal maturity in a safe, noninvasive and cost-effective manner. Objective: The purpose of this study was to compare bone properties and skeletal maturity in competitive male child and adolescent athletes with minimallyactive, age-matched controls, using QUS technology. >. Methods: In total, 224 males were included in the study. The 115 pre-pubertal boys aged 10-12 years consisted of control, minimally-active children (n=34), soccer players (n=26), gymnasts (n=25) and hockey players (n=30). In addition, the 109 late-pubertal boys aged 14-16 years consisted of control, minimally-active adolescents (n=31), soccer players (n=30), gymnasts (n=17) and hockey players (n=31). The athletic groups were elite level players that predominantly trained year-round. Physical activity, nutrition and sports participation were assessed with various questionnaires. Anthropometries, such as height, weight and relative body fat percentage (BF%) were assessed using standard measures. Skeletal strength and age were evaluated using bone QUS. Lastly, salivary testosterone (sT) concentration was measured using Radioimmunoassay (RIA). Results: Within each age group, there were no significant differences between the activity groups in age and pubertal stage. An age effect was apparent in all variables, as expected. A sport effect was noted in all physical characteristics: the child and adolescent gymnasts were shorter and lighter than other sports groups. Adiposity was greater in the controls and in the hockey players. All child subjects were pubertal stage (fanner) I or II, while adolescent subjects were pubertal stage IV or V. There were no differences in daily energy and mineral intakes between sports groups. In both age groups, gymnasts had a higher training volume than other athletic groups. Bone speed of sound (50s) was higher in adolescents compared with the children. Gymnasts had signifieantly higher radial 50S than controls, hockey and soccer players in both age cohorts. Hockey athletes also had higher radial 50S than controls and soccer players in the child and adolescent groups, respectiyely. Child gymnasts and soccer players had greater tibial 50S compared with the hockey players and control groups. Likewise, adolescent gymnasts and soccer players had higher tibial SoS compared with the control group. No interaction was apparent between age and type of activity in any of the bone measures. » Lastly, maturity as assessed by sT and secondary sex characteristics (Tanner stage) was not different between sports group within each age group. Despite the similarity in chronological age, androgen levels and sexual maturity, differences between activity groups were noted in skeletal maturity. In the younger group, hockey players had the highest bone age while the soccer players had the lowest bone age. In the adolescent group, gymnasts and hockey players were characterized by higher skeletal maturity compared with controls. An interaction between the age and sport type effects was apparent in skeletal maturity, reflecting the fact that among the children, the soccer players were significantly less mature than the rest of the groups, while in the adolescents, the controls were the least skeletally mature. Summary and Conclusions: In summary, radial and tibial SOS are enhanced by the unique loading pattern in each sport (i.e, upper and lower extremities in gymnastics, lower extremities in soccer), with no cumulative effect between childhood and adolescence. That is, the effect of sport participation on bone SOS was apparent already among the young athletes. Enhanced bone properties among athletes of specific sports suggest that participation in these sports can improve bone strength and potential bone health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare bone speed of sound (SOS) measured by quantitative ultrasound, circulating levels of IGF- 1 and biochemical markers of bone turnover in pre- (Pr) and post-menarcheal (Po) synchronized swimmers (SS) and controls (NS). Seventy participants were recruited: 8 PrSS, 22 PoSS, 20 PrNS, and 20 PoNS. Anthropometric measures of height, weight, skeletal maturity and percent body fat were taken, and dietary intake evaluated using 24-hour recall. Bone SOS was measured at the distal radius and mid-tibia and blood samples analyzed for IGF-1, osteocalcin, NTx, and 25-OH vitamin D. Results demonstrated maturational effects on bone SOS, IGF-1 and bone turnover (p<0.05), with no differences observed between SS and NS. Main effects were observed for a reduced caloric intake in SS compared to NS (p<0.05). Therefore, SS does not offer additive affects on bone strength but imparts no adverse affects to skeletal health in these athletes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last two decades, the prevalence of obesity in the general population has been steadily increasing. Obesity is a major issue in scientific research because it is associated with many health problems, one of which is bone quality. In adult females, adiposity is associated with increased bone mineral density, suggesting that there is a protective effect of fat on bone. However, the association between adiposity and bone strength during childhood is not clear. Thus, the purpose of this study was to compare bone strength, as reflected by speed of sound (SOS), of overweight and obese girls and adolescents with normal-weight age-matched controls. Data from 75 females included normal-weight girls (G-NW; body fat:::; 25%; n = 21), overweight and obese girls (GOW; body fat ~ 28%; n = 19), normal-weight adolescents (A-NW, body fat:::; 25%; n = 13) and overweight and obese adolescents (A-OW; body fat ~ 28%; n = 22). Nutrition was assessed with a 24-hour recall questionnaire and habitual physical activity was measured for one week using accelerometry. Using quantitative ultrasound (QUS; Sunlight Omnisense™), bone SOS was measured at the distal radius and mid-tibia. No differences were found between groups in daily total energy, calcium or vitamin D intake. However, all groups were below the recommended daily calcium intake of 1300 mg (Osteoporosis Canada, 2008). Adolescents were significantly less active than girls (14.7 ± 0.6 vs. 6.3 ± 0.6% active for G and A, respectively). OW accumulated significantly less minutes of moderate-to-very vigorous physical activity per day (MVPA) than NW in both age groups (114 ± 6 vs. 57 ± 5 min/day for NW and OW, i respectively). Girls had significantly lower radial SOS (3794 ± 87 vs. 3964 ± 64 mls for G-NW and A-NW, respectively), and tibial SOS (3678 ± 86 vs. 3878 ± 52 mls for G-NW and A-NW, respectively) than adolescents. Radial SOS was similar in the two adiposity groups within each age group. However, tibial SOS was lower in the two overweight groups (3601 ± 75 mls vs. 3739 ± 134 mls for G-OW and A-OW, respectively) compared with the age-matched normal-weight controls. Body fat percentage negatively correlated with tibial SOS in the study sample as a whole (r = -0.30). However, when split into groups, percent bo~y fat correlated with tibial SOS only in the A-OW group (r = -0.53). MVPA correlated with tibial SOS (r = 0.40), once age was partialed out. In conclusion, in contrast withthe higher bone strength characteristic of obese adult women, overweight and obese girls and adolescents are characterized by low tibial bone strength, as assessed with QUS. The differences between adiposity groups in tibial SOS may be at least partially due to the reduced weight-bearing physical activity levels in the overweight girls and adolescents. However, other factors, such as hormonal influences associated with high body fat may also playa role in reducing bone strength in overweight girls. Further research is required to reveal the mechanisms causing low bone strength in overweight and obese children and adolescents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to examine the associations between bone speed of sound (SOS) and body composition, osteoporosis-related health behaviours, and socioeconomic status (SES) in adolescent females. A total of 442 adolescent females in grades 9-11 participated. Anthropometric measures of height, body mass, and percent body fat were taken, and osteo-protective behaviours such as oral contraceptive use (OC), physical activity and daily calcium intake were evaluated using self-report questionnaires. Bone SOS was measured by transaxial quantitative ultrasound (QUS) at the distal radius and mid-tibia. The results suggest that fat mass is a significant negative predictor of tibial SOS, while lean mass is positively associated with radial SOS scores and calcium intake was positively associated with tibial SOS scores (pbone SOS. Therefore bone strength measured by QUS is reduced in adolescents with an increased fat mass, and influenced positively by OC use, calcium intake and lean mass.