952 resultados para Body growth
Resumo:
Patients with chronic obstructive pulmonary disease (COPD) often develop weight loss, which is associated with increased mortality. Recombinant human growth hormone (rhGH) treatment has been proposed to improve nitrogen balance and to increase muscle strength in these patients. The aim of this study was to assess the effects of rhGH administration on the nutritional status, resting metabolism, muscle strength, exercise tolerance, dyspnea, and subjective well-being of underweight patients with stable COPD. Sixteen patients attending a pulmonary rehabilitation program (age: 66 +/- 9 yr; weight: 77 +/- 7% of ideal body weight; FEV1: 39 +/- 13% of predicted) were randomly treated daily with either 0.15 IU/kg rhGH or placebo during 3 wk in a double-blind fashion. Measurements were made at the beginning (DO) and at the end (D21) of treatment and 2 mo later (D81). Body weight was similar in the two groups during the study, but lean body mass was significantly higher in the rhGH group at D21 (p < 0.01) and D81 (p < 0.05). The increase in lean body mass was 2.3 +/- 1.6 kg in the rhGH group and 1.1 +/- 0.9 kg in the control group at D21 and 1.9 +/- 1.6 kg in the rhGH group and 0.7 +/- 2.1 kg in the control group at D81. At D21, the resting energy expenditure was increased in the rhGH group (107.8% of DO, p < 0.001 compared with the control group). At D21 and D81, the changes in maximal respiratory pressures, handgrip strength, maximal exercise capacity, and subjective well-being were similar in the two groups. At D21, the 6-min walking distance decreased in the rhGH group (-13 +/- 31%) and increased in the control group (+10 +/- 14%; p < 0.01). We conclude that the daily administration of 0.15 IU/kg rhGH during 3 wk increases lean body mass but does not improve muscle strength or exercise tolerance in underweight patients with COPD.
Resumo:
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 1820 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.
Resumo:
Dynamic changes in body weight have long been recognized as important indicators of risk for debilitating diseases. While weight loss or impaired growth can lead to muscle wastage, as well as to susceptibility to infections and organ dysfunctions, the development of excess fat predisposes to type 2 diabetes and cardiovascular diseases, with insulin resistance as a central feature of the disease entities of the metabolic syndrome. Although widely used as the phenotypic expression of adiposity in population and gene-search studies, body mass index (BMI), that is, weight/height(2) (H(2)), which was developed as an operational definition for classifying both obesity and malnutrition, has considerable limitations in delineating fat mass (FM) from fat-free mass (FFM), in particular at the individual level. After an examination of these limitations within the constraints of the BMI-FM% relationship, this paper reviews recent advances in concepts about health risks related to body composition phenotypes, which center upon (i) the partitioning of BMI into an FM index (FM/H(2)) and an FFM index (FFM/H(2)), (ii) the partitioning of FFM into organ mass and skeletal muscle mass, (iii) the anatomical partitioning of FM into hazardous fat and protective fat and (iv) the interplay between adipose tissue expandability and ectopic fat deposition within or around organs/tissues that constitute the lean body mass. These concepts about body composition phenotypes and health risks are reviewed in the light of race/ethnic variability in metabolic susceptibility to obesity and the metabolic syndrome.
Resumo:
Background: Little is known on the relative importance of growth at different periods between birth and adolescence on blood pressure (BP). Objective: To assess the association between birth weight, change in body weight (growth) and BP across the entire span of childhood and adolescence. Methods: School-based surveys were conducted annually between 1998 and 2006 among all children in four school grades (kindergarten, 4th, 7th, and 10th year of compulsory school) in the Seychelles, Indian Ocean. Height and weight and BP were measured. Three cohorts of children examined twice were analyzed: 1606 children surveyed at age 5.5 and 9.1, 2557 at age 9.2 and 12.5, and 2065 at age 12.5 and 15.5, respectively. Weights at birth and at one year were extracted from medical files. Weights were expressed as Z-scores and growth was defined as a change in weight Z-scores (corresponding to weight centile crossing). The association between BP (at age 5.5, 9.2, 12.5, and 15.5) and weight at different times was assessed by linear regression. Using results of regression models of BP on all successive weights, life course plots were drawn by plotting regression coefficients against age at which weight was measured. The figure shows a life course plot of systolic BP in boys aged 15.5. Results: Without adjustment for current weight (at the time of BP measurement), birth weight was not associated with current BP, irrespective of age, excepted for girls at age 15.5 for whom a modest positive association was found. When adjusted for current weight, birth weight was negatively and modestly associated with current BP. BP was strongly associated with current weight, irrespective of age. Life course plots showed that BP was strongly associated with growth during the few preceding years but not with growth during earlier years, except for growth during the first year of life which tended to be associated with systolic BP. Conclusions: Our findings suggest that BP during childhood and adolescence is mainly determined by current body weight and recent growth.
Resumo:
Enterococcal implant-associated infections are difficult to treat because antibiotics generally lack activity against enterococcal biofilms. We investigated fosfomycin, rifampin, and their combinations against planktonic and adherent Enterococcus faecalis (ATCC 19433) in vitro and in a foreign-body infection model. The MIC/MBClog values were 32/>512 μg/ml for fosfomycin, 4/>64 μg/ml for rifampin, 1/2 μg/ml for ampicillin, 2/>256 μg/ml for linezolid, 16/32 μg/ml for gentamicin, 1/>64 μg/ml for vancomycin, and 1/5 μg/ml for daptomycin. In time-kill studies, fosfomycin was bactericidal at 8× and 16× MIC, but regrowth of resistant strains occurred after 24 h. With the exception of gentamicin, no complete inhibition of growth-related heat production was observed with other antimicrobials on early (3 h) or mature (24 h) biofilms. In the animal model, fosfomycin alone or in combination with daptomycin reduced planktonic counts by ≈4 log10 CFU/ml below the levels before treatment. Fosfomycin cleared planktonic bacteria from 74% of cage fluids (i.e., no growth in aspirated fluid) and eradicated biofilm bacteria from 43% of cages (i.e., no growth from removed cages). In combination with gentamicin, fosfomycin cleared 77% and cured 58% of cages; in combination with vancomycin, fosfomycin cleared 33% and cured 18% of cages; in combination with daptomycin, fosfomycin cleared 75% and cured 17% of cages. Rifampin showed no activity on planktonic or adherent E. faecalis, whereas in combination with daptomycin it cured 17% and with fosfomycin it cured 25% of cages. Emergence of fosfomycin resistance was not observed in vivo. In conclusion, fosfomycin showed activity against planktonic and adherent E. faecalis. Its role against enterococcal biofilms should be further investigated, especially in combination with rifampin and/or daptomycin treatment.
Resumo:
Peptides that interfere with the natural resistance of cancer cells to genotoxin-induced apoptosis may improve the efficacy of anticancer regimens. We have previously reported that a cell-permeable RasGAP-derived peptide (TAT-RasGAP(317-326)) specifically sensitizes tumor cells to genotoxin-induced apoptosis in vitro. Here, we examined the in vivo stability of a protease-resistant D-form of the peptide, RI.TAT-RasGAP(317-326), and its effect on tumor growth in nude mice bearing subcutaneous human colon cancer HCT116 xenograft tumors. After intraperitoneal injection, RI.TAT-RasGAP(317-326) persisted in the blood of nude mice for more than 1 hour and was detectable in various tissues and subcutaneous tumors. Tumor-bearing mice treated daily for 7 days with RI.TAT-RasGAP(317-326) (1.65 mg/kg body weight) and cisplatin (0.5 mg/kg body weight) or doxorubicin (0.25 mg/kg body weight) displayed reduced tumor growth compared with those treated with either genotoxin alone (n = 5-7 mice per group; P = .004 and P = .005, respectively; repeated measures analysis of variance [ANOVA, two-sided]). This ability of the RI.TAT-RasGAP(317-326) peptide to enhance the tumor growth inhibitory effect of cisplatin was still observed at peptide doses that were at least 150-fold lower than the dose lethal to 50% of mice. These findings provide the proof of principle that RI.TAT-RasGAP(317-326) may be useful for improving the efficacy of chemotherapy in patients.
Resumo:
The objective of this work was to evaluate the effect of sustained swimming and dietary protein levels on growth and hematological responses of juvenile pacu (Piaractus mesopotamicus). A completely randomized design was used in a 3x2 factorial arrangement, with three levels of dietary protein (24, 28, and 32% crude protein), two rearing conditions (sustained swimming or motionless water), and 15 replicates. Fish were subjected to sustained swimming at the velocity of two body lengths per second (2 BL s-1), for 45 days. The level of dietary protein and the swimming conditions affected the performance, growth, and hematological profile of pacu. Swimming conditions influenced nutritional factors, increasing daily weight gain, specific growth rate, number of erythrocytes, mean corpuscular volume, and mean corpuscular hemoglobin. Fish under sustained swimming and fed with 24% crude protein showed better growth performance, with higher specific growth rate (4.11±0.88) and higher daily weight gain (2.19±0.47 g per day). Sustained swimming can increase the productive performance of pacu and simultaneously reduce dietary protein levels.
Resumo:
The objective of this work was to evaluate the ideal feeding rate and frequency for juvenile pompano (Trachinotus marginatus). Two experiments were carried out in a completely randomized design, with three replicates each. In experiment I, 25 fish (4.8±0.6 g and 6.48±0.01 cm) were stocked in 15 tanks (50 L) during 21 days and fed 4, 8, 12, 16, and 20% body weight per day. In experiment II, 20 fish (4.1±0.1 g and 6.6±0.1 cm) were stocked in 15 tanks (40 L) during 28 days and fed 2, 6, 8, and 10 times a day. The tested feeding rates and frequencies did not influence survival. Final weight and length in experiment I were significantly lower in fish fed 4% body weight per day, whereas in experiment II only weight was significantly lower in fish fed 2 and 6 times a day. At the end of both experiments, apparent feed conversion showed significant difference, with the worst value observed for fish fed 20% body weight per day in experiment I and 2 times a day in experiment II. Juvenile pompano show better growth performance when fed 8% body weight per day and 8 times a day.
Resumo:
The aim of the present work was to study whole body protein synthesis and breakdown, as well as energy metabolism, in very low birth weight premature infants (less than 1500 g) during their rapid growth phase. Ten very low birth weight infants were studied during their first and second months of life. They received a mean energy intake of 114 kcal/kg X day and 3 g protein/kg X day as breast milk or milk formula. The average weight gain was 15 g/kg X day. The apparent energy digestibility was 88%, i.e. 99 kcal/kg X day. Their resting postprandial energy expenditure was 58 kcal/kg X day, indicating that 41 kcal/kg X day was retained. The apparent protein digestibility was 89%, i.e. 2.65 g/kg X day. Their rate of protein oxidation was 0.88 g/kg X day so that protein retention was 1.76 g/kg X day. There was a linear relationship between N retention and N intake (r = 0.78, p less than 0.001). The slope of the regression line indicates a net efficiency of N utilization of 67%. Estimates of body composition from the energy balance, coupled with N balance method, showed that 25% of the gain was fat and 75% was lean tissue. Whole body protein synthesis and breakdown were determined using repeated oral administration of 15N glycine for 60-72 h, and 15N enrichment in urinary urea was measured. Protein synthesis averaged 11.2 g/kg X day and protein breakdown 9.4 g/kg X day. Muscular protein breakdown, as estimated by 3-methylhistidine excretion, contributed to 12% of the total protein breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The objective of this work was to evaluate the effects of supplemental feeding of soy waste on the feed intake and growth rate of goats. Twenty male crossbred (Boer x local) goats were assigned to two isonitrogenous diet groups: one of commercial pellet and the other of soy waste. The commercial pellet (1.0%) and soy waste (0.8%) were provided on the dry matter basis of body weight (BW) per day, to the respective group of each diet. The soy waste group had lower daily intakes of total dry matter (0.79 vs. 0.88 kg) and organic matter (665.71 vs. 790.44 g) than the group fed pellet; however, the differences on daily intakes for grass (0.62 vs. 0.64 kg), crude protein (96.81 vs. 96.83 g), and neutral detergent fibre (483.70 vs. 499.86 g) were not significant. No differences were observed between groups for BW gain. The feed conversion ratio and feed cost per kilogram of BW gain were lower for the group fed soy waste than for the one fed pellet. Goats fed supplemental soy waste have a lower total dry matter intake, feed conversion ratio, and feed cost per kilogram of body weight gain than those fed commercial pellets.
Resumo:
Résumé Les études épidémiologiques indiquent que la restriction intra-utérine confère un risque accru de développement de diabète de type 2 au cours de la vie. Certaines études ont documenté la présence d'une résistance à l'insuline chez les jeunes adultes ou les adolescents nés petits pour l'âge gestationnel. Comme la plupart des études ont impliqués des individus post-pubères et comme la puberté influence de manière marquée le métabolisme énergétique, nous avons évalué le devenir du glucose administré oralement dans un groupe incluant essentiellement des enfants pré-pubères ou en début de puberté avec restriction intra-utérine, et chez des enfants matchés pour l'âge et pour le poids. Tous les enfants ont eu une évaluation de leur composition corporelle par mesure des plis cutanés. Ils ont ensuite été étudiés dans des conditions standardisées et ont reçu 4 charges consécutives orales de glucose à raison de 180 mg/kg de poids corporel jusqu'à atteindre un état d'équilibre relatif. La dépense énergétique et l'oxydation des substrats ont été évaluées durant la quatrième heure par calorimétrie indirecte. Comparativement avec les enfants matchés pour l'âge et le poids, les enfants nés petits pour l'âge gestationnel avaient une plus petite stature. Leur dépense énergétique n'était pas significativement abaissée, mais leur oxydation du glucose était plus basse. Ces résultats indiquent que des altérations métaboliques sont présentes précocement chez les enfants nés petits pour l'âge gestationnel, et qu'elles sont possiblement reliées à des altérations de la composition corporelle. Abstract: Epidemiological studies indicate that intrauterine growth restriction confers an increased risk of developing type 2 diabetes mellitus in subsequent life. Several studies have further documented the presence of insulin resistance in young adults or adolescent children born small for gestational age. Since most studies addressed postpubertal individuals, and since puberty markedly affects energy metabolism, we evaluated the disposal of oral glucose in a group including mainly prepubertal and early pubertal children with intrauterine growth restriction and in healthy age- and weight-matched control children. All children had an evaluation of their body composition by skinfold thickness measurements. They were then studied in standardized conditions and received 4 consecutive hourly loads of 180 mg glucose/kg body weight to reach a near steady state. Energy expenditure and substrate oxidation were evaluated during the fourth hour by indirect calorimetry. Compared to both age- and weight-matched children, children born small for gestational age had lower stature. Their energy expenditure was not significantly decreased, but they had lower glucose oxidation rates. These results indicate that metabolic alterations are present early in children born small for gestational age, and are possibly related to alterations of body composition.
Resumo:
Non-invasive methods, including stable isotope techniques, indirect calorimetry, nutritional balance and skinfold thickness, have given a new insight into early postnatal growth in neonates. Neonates and premature infants in particular, create an unusual opportunity to study the fluid and metabolic adaptation to extrauterine life because their physical environment can be controlled, fluid and energy balance can be measured and the link between metabolism and the energetics of their postnatal growth can be assessed accurately. Thus the postnatal time course of total body water, heat production, energy cost of growth and composition of weight gain have been quantified in a series of "healthy" low-birth-weight premature infants. These results show that total body water is remarkably stable between postnatal days 3-21. Energy expenditure and heat production rates increase postnatally from mean values of 40 kcal/kg/day during the first week to 60 kcal/kg/day in the third week. An apparent energy balance deficit of 180 kcal/kg can be ascribed to premature delivery. The cost of protein metabolism is the highest energy demanding process related to growth. The fact that nitrogen balance becomes positive within 72 h after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism during early postnatal growth: skinfold thickness, dry body mass and fat decrease, while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches statural growth. The goals of the following review are to summarize data on total body water and energy metabolism in premature infants and to discuss how they correlate with physiological aspects of early postnatal growth.
Resumo:
The activity of dalbavancin, a representative of the lipoglycopeptide antibiotics, alone and in combination with rifampicin, was investigated against meticillin-resistant Staphylococcus aureus (MRSA) in a foreign-body infection model in guinea pigs. The MIC, MBC and time-kill profile of dalbavancin were determined for MRSA ATCC 43300 in the logarithmic (MBClog) and stationary (MBCstat) growth phases. The pharmacokinetic profile of dalbavancin was determined in sterile cage fluid in guinea pigs. The activity of intraperitoneal dalbavancin (40, 60 or 80mg/kg as a single dose), rifampicin (12.5mg/kg/12h for 4 days) and their combination was assessed against planktonic and biofilm MRSA. The MIC of dalbavancin was 0.078mg/L; MBClog and MBCstat were both >128Ã- MIC. In time-kill studies, bacterial reduction of 3log10CFU/mL was achieved after 48h at â0/00¥32Ã- MIC (logarithmic growth) and at â0/00¥1Ã- MIC (stationary growth). Dalbavancin was neither synergistic nor antagonistic with rifampicin, and prevented the emergence of rifampicin resistance in vitro. The half-life of dalbavancin in cage fluid was 35.8-45.4h and the concentration remained above the MIC of MRSA during 7 days after a single dose. Dalbavancin reduced planktonic MRSA in cage fluid at high dose (60mg/kg and 80mg/kg) but failed to eradicate biofilm MRSA from cages. In combination with rifampicin, dalbavancin at 80mg/kg cured 36% of infected cages, and emergence of rifampicin resistance was completely prevented. Dalbavancin at 80mg/kg and in combination with rifampicin eradicated approximately one-third of cage-associated MRSA infections and prevented emergence of rifampicin resistance.
Resumo:
BACKGROUND: The pre-conditioning of tumor vessels by low-dose photodynamic therapy (L-PDT) was shown to enhance the distribution of chemotherapy in different tumor types. However, how light dose affects drug distribution and tumor response is unknown. Here we determined the effect of L-PDT fluence on vascular transport in human mesothelioma xenografts. The best L-PDT conditions regarding drug transport were then combined with Lipoplatin(®) to determine tumor response. in vivo. Lasers Surg. Med. 47:323-330, 2015. © 2015 Wiley Periodicals, Inc. METHODS: Nude mice bearing dorsal skinfold chambers were implanted with H-Meso1 cells. Tumors were treated by Visudyne(®) -mediated photodynamic therapy with 100 mW/cm(2) fluence rate and a variable fluence (5, 10, 30, and 50 J/cm(2) ). FITC-Dextran (FITC-D) distribution was assessed in real time in tumor and normal tissues. Tumor response was then determined with best L-PDT conditions combined to Lipoplatin(®) and compared to controls in luciferase expressing H-Meso1 tumors by size and whole body bioluminescence assessment (n = 7/group). RESULTS: Tumor uptake of FITC-D following L-PDT was significantly enhanced by 10-fold in the 10 J/cm(2) but not in the 5, 30, and 50 J/cm(2) groups compared to controls. Normal surrounding tissue uptake of FITC-D following L-PDT was significantly enhanced in the 30 J/cm(2) and 50 J/cm(2) groups compared to controls. Altogether, the FITC-D tumor to normal tissue ratio was significantly higher in the 10 J/cm(2) group compared others. Tumor growth was significantly delayed in animals treated by 10 J/cm2-L-PDT combined to Lipoplatin(®) compared to controls. CONCLUSIONS: Fluence of L-PDT is critical for the optimal distribution and effect of subsequently administered chemotherapy. These findings have an importance for the clinical translation of the vascular L-PDT concept in the clinics. Lasers Surg. Med. 47:323-330, 2015.
Resumo:
Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits.