986 resultados para Board composition
Resumo:
Marine viruses have been shown to affect phytoplankton productivity; however, there are no reports on the effect of viruses on benthic microalgae (microphytobenthos). Hence, this study investigated the effects of elevated concentrations of virus-like particles on the photosynthetic physiology and community composition of benthic microalgae and phytoplankton. Virus populations were collected near the sediment surface and concentrated by tangential flow ultrafiltration, and the concentrate was added to benthic and water column samples that were obtained along a eutrophication gradient in the Brisbane River/Moreton Bay estuary, Australia. Photosynthetic and community responses of benthic microalgae, phytoplankton and bacteria were monitored over 7 d in aquaria and in situ. Benthic microalgal communities responded to viral enrichment in both eutrophic and oligotrophic sediments. In eutrophic sediments, Euglenophytes (Euglena sp.) and bacteria decreased in abundance by 20 to 60 and 26 to 66%, respectively, from seawater controls. In oligotrophic sediments, bacteria decreased in abundance by 30 to 42% from seawater controls but the dinoflagellate Gymnodinium sp. increased in abundance by 270 to 3600% from seawater controls, The increased abundance of Gymnodinium sp. may be related to increased availability of dissolved organic matter released from lysed bacteria. Increased (140 to 190% from seawater controls) initial chlorophyll a fluorescence measured with a pulse-amplitude modulated fluorometer was observed in eutrophic benthic microalgal incubations following virus enrichment, consistent with photosystem II damage. Virus enrichment in oligotrophic water significantly stimulated carbon fixation rates, perhaps due to increased nutrient availability by bacterial lysis. The interpretation of data from virus amendment experiments is difficult due to potential interaction with unidentified bioactive compounds within seawater concentrates. However, these results show that viruses are capable of influencing microbial dynamics in sediments.
Resumo:
Carbon isotope composition (delta C-13), oxygen isotope composition (delta O-18), and nitrogen concentration (N-mass) of branchlet tissue at two canopy positions were assessed for glasshouse seedlings and 9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 22 open-pollinated families grown in 5 blocks of a progeny test at a water-limited and nitrogen-deficient site in southeastern Queensland, Australia. Significant variations in canopy delta C-13, delta O-18, and N-mass existed among the 9-year-old hoop pine families, with a heritability estimate of 0.72 for branchlet delta C-13 from the upper inner canopy position. There was significant variation in canopy delta C-13 of glasshouse seedlings between canopy positions and among the families, with a heritability estimate of 0.66. The canopy delta C-13 was positively related to canopy N-mass only for the upper outer crown in the field (R = 0.62, p < 0.001). Phenotypic correlations existed between tree height and canopy delta C-13 (R = 0.37-0.41, p < 0.001). Strong correlations were found between family canopy delta C-13 at this site and those at a wetter site and between field canopy delta C-13 and glasshouse seedling delta C-13. The mechanisms of the variation in canopy delta C-13 are discussed in relation to canopy photosynthetic capacity as reflected in the N-mass and stomatal conductance as indexed by canopy delta O-18.
Resumo:
This study investigated the change in body composition in 36 cancer outpatients receiving radiotherapy to the head and neck area (mean age: 63 ± 15 years) randomised to receive either nutrition intervention (NI; n=15) or usual care (UC; n=21). Body weight and composition were measured at the commencement of radiotherapy and 3 months later. The UC group lost significantly more weight; mean decrease = 4.3 kg, than the NI group: mean decrease = 1.1 kg (t(30)=-2.5, p=0.019). Fat-free mass loss was significantly higher in the UC group with a mean loss of 2.2 kg versus 0.3 kg in the NI group (t(30)=- 2.3, p=0.029). Body composition as measured by foot-to-foot bioelectrical impedance analysis provides more information than weight alone and can allow for tailoring of NI.
Resumo:
It is predicted that dryland salinity will affect up to 17 Mha of the Australian landscape by 2050, and therefore, monitoring the health of tree plantings and remnant native vegetation in saline areas is increasingly important. Casuarina glauca Sieber ex Spreng. has considerable salinity tolerance and is commonly planted in areas with a shallow, saline water table. To evaluate the potential of using the nitrogenous composition of xylem sap to assess salinity stress in C. glauca, the responses of trees grown with various soil salinities in a greenhouse were compared with those of trees growing in field plots with different water table depths and groundwater salinities. In the greenhouse, increasing soil salinity led to increased allocation of nitrogen (N) to proline and arginine in both stem and root xylem sap, with coincident decreases in citrulline and asparagine. Although the field plots were ranked as increasingly saline-based on ground water salinity and depth-only the allocation of N to citrulline differed significantly between the field plots. Within each plot, temporal variation in the composition of the xylem sap was related to rainfall, rainfall infiltration and soil salinity. Periods of low rainfall and infiltration and higher soil salinity corresponded with increased allocation of N to proline and arginine in the xylem sap. The allocation of N to citrulline and asparagine increased following rainfall events where rain was calculated to have infiltrated sufficiently to decrease soil salinity. The relationship between nitrogenous composition of the xylem sap of C. glauca and soil salinity indicates that the analysis of xylem sap is an effective method for assessing changes in salinity stress in trees at a particular site over time. However, the composition of the xylem sap proved less useful as a comparative index of salinity stress in trees growing at different sites.
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
Riding waves on a bodyboard (boogie board) at the beach is popular with children. Three teenagers who sustained blunt abdominal trauma during bodyboarding are described. Two suffered lacerated livers, one a lacerated spleen. Serious blunt abdominal injuries from bodyboarding mishaps have not previously been reported. The usual method of riding a bodyboard may place the rider at risk of abdominal trauma.
Resumo:
Objective: To investigate the effects of rosiglitazone (RSG) on insulin sensitivity and regional adiposity (including intrahepatic fat) in patients with type 2 diabetes. Research Methods and Procedures: We examined the effect of RSG (8 mg/day, 2 divided doses) compared with placebo on insulin sensitivity and body composition in 33 type 2 diabetic patients. Measurements of insulin sensitivity (euglycemic hyperinsulinemic clamp), body fat (abdominal magnetic resonance imaging and DXA), and liver fat (magnetic resonance spectroscopy) were taken at baseline and repeated after 16 weeks of treatment. Results: There was a significant improvement in glycemic control (glycosylated hemoglobin -0.7 +/- 0.7%, p less than or equal to 0.05) and an 86% increase in insulin sensitivity in the RSG group (glucose-disposal rate change from baseline: 17.5 +/- 14.5 mumol glucose/min/kg free fat mass, P < 0.05), but no significant change in the placebo group compared with baseline. Total body weight and fat mass increased (p &LE; 0.05) with RSG (2.1 +/- 2.0 kg and 1.4 +/- 1.6 kg, respectively) with 95% of the increase in adiposity occurring in nonabdominal regions. In the abdominal region, RSG increased subcutaneous fat area by 8% (25.0 +/- 28.7 cm(2), p = 0.02), did not alter intra-abdominal fat area, and reduced intrahepatic fat levels by 45% (-6.7 +/- 9.7%, concentration relative to water). Discussion: Our data indicate that RSG greatly improves insulin sensitivity in patients with type 2 diabetes and is associated with an increase in adiposity in subcutaneous but not visceral body regions.
Resumo:
The effect of the solid and dissolved organic matter fractions, mineral composition and ionic strength of the soil solution on the sorption behaviour of pesticides were studied. A number of soils, chosen so as to have different clay mineral and organic carbon content, were used to study the sorption of the pesticides atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine), 2,4-D ((2,4-dichlorophenoxy) acetic acid), isoproturon (3-(4-isopropylphenyl)1,1-dimethylurea) and paraquat (1,1'-dimethyl-4,4'-bipyridinium) in the presence of low and high levels of dissolved organic carbon and different background electrolytes. The sorption behaviour of atrazine, isoproturon and paraquat was dominated by the solid state soil components and the presence of dissolved organic matter had little effect. The sorption of 2,4-D was slightly affected by the soluble organic matter in the soil. However, this effect may be due to competition for adsorption sites between the pesticide and the soluble organic matter rather than due to a positive interaction between the pesticide and the soluble fraction of soil organic matter. It is concluded that the major factor governing the sorption of these pesticides is the solid state organic fraction with the clay mineral content also making a significant contribution. The dissolved organic carbon fraction of the total organic carbon in the soil and the ionic strength of the soil solution appear to have little or no effect on the sorption/transport characteristics of these pesticides over the range of concentrations studied. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Lipid, protein, ash, carbohydrate and water content and energy density of eggs were measured from different clutches over a range of egg size in two species of freshwater turtle. Dry egg contents consisted of protein (54-60%), lipid (25-31%) and ash (5-6%) while carbohydrate was found to be negligible (
Resumo:
The objectives of this study were: (1) to quantify the genetic variation in foliar carbon isotope composition (delta(13)C) of 122 clones of ca. 4-year-old F-1 hybrids between slash pine (Pinus elliottii Engelm var. elliottii) and Caribbean pine (Pinus caribaea var. hondurensis Barr.,et Golf.) grown at two field experimental sites with different water and nitrogen availability in southeast Queensland, Australia, in relation to tree growth and foliar nitrogen concentration (N-mass); and (2) to assess the potential of using delta(13)C measurements, in the foliage materials collected from the clone hedges at nursery and the 4-year-old tree canopies in the field, as an indirect index of tree water use efficiency for selecting elite F-1 hybrid pine clones with improved tree growth. There were significant differences in foliar delta(13)C between the nursery hedges and the 4-year-old tree canopies in the field, between the summer and winter seasons, between the two experimental sites, and between the upper outer and lower outer canopy positions sampled. This indicates that delta(13)C measurements in the foliage materials are significantly influenced by the sampling techniques and environmental conditions. Significant differences in foliar delta(13)C, at the upper outer canopy in both field experiments in summer and winter, were detected between the clones, and between the female parents of the clones. Clone means of tree height at age ca. 3 years were positively related to those of the upper outer canopy delta(13)C at both experimental sites in winter, but only for the wetter site in summer. There were positive, linear relationships between clone means of canopy delta(13)C and those of canopy N-mass, indicating that canopy photosynthetic capacity might be an important factor regulating the clonal variation in canopy delta(13)C. Significant correlations were found between clone means of canopy delta(13)C at both experimental sites in summer and winter, and between those at the upper outer and lower outer canopy positions. Mean clone delta(13)C for the nursery hedges was only positively related to mean clone stem diameter at 1.3 m height at age 3 years on the wetter site. The clone by site interaction for foliar delta(13)C at the upper outer canopy was significant only in summer. Overall, the relatively high genetic variance components for foliar delta(13)C and significant, positive correlations between clone means of foliar delta(13)C and tree growth have highlighted the potential of using foliar delta(13)C measurements for assisting in selection of the elite F-1 hybrid pine clones with improved tree growth. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Solid-state C-13 nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues. (C) 2002 Published by Elsevier Science B.V.