892 resultados para Bird banding.
Resumo:
We analysed samples of Aedes aegypti from Sao Jose do Rio Preto and Franca (Brazil) by C-banding and Ag-banding staining techniques. C-banding pattern of Ae. aegypti from Sao Jose do Rio Preto examined in metaphase cells differed from Franca. The chromosomes 2, 3 and X showed centromeric C-bands in both populations, but a slightly stained centromeric band in the Y chromosome was observed only in Sao Jose do Rio Preto. In addition, the X chromosome in both populations and the Y chromosome of all individuals from Sao Jose do Rio Preto showed an intercalary band on one of the arms that was absent in Franca. An intercalary, new band, lying on the secondary constriction of chromosome 3 was also present in mosquitoes of both populations. The comparison of the present data with data in the literature for Ae. aegypti from other regions of the world showed that they differ as to the banding pattern of sex chromosomes and the now described intercalary band in chromosome 3. The observations suggested that the heterochromatic regions of all chromosomes are associated to constitute a single C-banded body in interphase cells. Ag-banding technique stained the centromeric regions of all chromosomes (including the Y) and the intercalary C-band region of the X chromosome in both populations. As Ae. aegypti populations are widespread in a great part of the world, the banding pattern variations indicate environmental interactions and may reveal both the chromosome evolutionary patterns in this species and the variations that may interfere with its vector activity.
Resumo:
The present work realized a comparative study in meiosis of two triatomines, Panstrongylus herreri and P. megistus, by cytogenetic techniques involving the restriction endonucleases Hae III and Alu I and C-banding. The system of sex chromosomes in Panstrongylus is of the X1X2Y type, and experiments corroborated the common origin hypothesis of the X chromosomes by fragmentation of single X. In both species the restriction endonucleases (RE) presented banding patterns in part similar to C-banding. However, in some early meiotic phases it was possible to verify differentiation of the heterochromatic pattern. This work suggests that other elements besides presence of recognition sites, such as chromatin packing degree and DNA-protein interaction, act in RE results, since digestion patterns occur in early spermatogenesis. However, metaphase chromosomes were practically inaccessible to the endonucleases.
Resumo:
Two wild diploid (2n = 20 chromosomes) and self-pollinating Arachis species, Arachis Pintoi Krapov and W.C. Gregory and A. villosulicarpa Hoehne were submmited to C-band technique to karyotype analyses. Root tips were employed in the analyses. Morphometric data chose that chromosome lengths varied from 3.12 in A. villosulicarpa to 1.45 in A. Pintoi. Karyotype formula obtained was 10sm to A. Pintoi and 9sm + 1m to A. villosulicarpa. There was a predominance of pericentromeric C-band in all mitotic metaphasic chromosomes in both species. Besides C-band values, both species still did not differ in respect to chromosome absolute and relative lengths, centromeric index, symmetry index and total karyotype haploid length. C-band and morphometric data did not show strong or significant differences which could separate these two species of peanut which belong to evolutive different sections.
Resumo:
Increased urbanization typically leads to an increase in abundance of a few species and a reduction in bird species richness. Understanding the structure of biotic communities in urban areas will allow us to propose management techniques and to decrease conflicts between wild species and human beings. The objective of this study was to describe the structure of the bird community in an urban ecosystem. The study was carried out in the city of Taubaté in southeastern Brazil. Point-counts were established in areas with different levels of tree density ranging from urban green spaces to predominantly built-up areas. We looked for a correlation between the richness/abundance of birds and the size of the area surveyed, the number of houses, the number of tree species and the number of individual trees. The results of multiple regression showed that bird richness had a direct relationship with vegetation complexity. The abundance and diversity of tree species were better predictors of bird species than the number of houses and size of the area surveyed. We discuss implications of this study for conservation and management of bird diversity in urban areas, such as the need to increase green areas containing a large diversity of native plant species. © 2011 Springer Science+Business Media, LLC.
Resumo:
The aim of this study was to evaluate a simple molecular method of reverse transcriptase polymerase chain reaction (RT-PCR) to differentiate Newcastle disease virus strains according to their pathogenicity, in order to use it in molecular screening of Newcastle disease virus in poultry and free-living bird populations. Specific primers were developed to differentiate LaSota-LS-(vaccine strain) and Sao Joao do Meriti-SJM-strain (highly pathogenic strain). Chickens and pigeons were experimentally vaccinated/infected for an in vivo study to determine virus shedding in feces. Validation of sensitivity and specificity of the primers (SJM and LS) by experimental models used in the present study and results obtained in the molecular analysis of the primers by BLAST made it possible to generalize results. The development of primers that differentiate the level of pathogenicity of NDV stains is very important, mainly in countries where real-time RT-PCR is still not used as a routine test. These primers were able to determine the presence of the agent and to differentiate it according to its pathogenicity. © 2012 Springer Science+Business Media B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Karyotypes are compared of 14 species of Brazilian Columbiformes (family Columbidae): Claravis pretiosa (2n=74), Columba cayennensis (2n=76), Columba picazuro (2n=76), Columba speciosa (2n=76), Columbina minuta (2n=76), Columbina passerina (2n=76), Columbina picui (2n=76), Columbina talpacoti (2n=76), Geotrygon montana (2n=86), Leptotila rufaxilla (2n=76), Leptotila verreauxi (2n=78), Scardafella squammata (2n=78), Uropelia campestris (2n=68) and Zenaida auriculata (2n=76). The macrochromosomes of each species were analysed by conventional Giemsa staining, cytobiometrically and with G-and C-banding. All species studied are characterized by typical bird karyotypes with a few pairs of macrochromosomes and many microchromosomes. The morphology and relative length of the Z chromosome are nearly the same in all species, but the W chromosome shows variation. The G-band patterns of the first pair in Columbiformes show a large positive band distally in the long arm, common to all species of the order. The constitutive heterochromatin is restricted to the centromeres of the macro- and microchromosomes. The W is the most heterochromatic chromosome in all species studied. Studies of relative lengths, arm ratios and G- and C-banding patterns showed that in Columbiformes pairs 3, 4 and 5 are the most stable. The types of rearrangements distinguishing between species vary among the genera: pericentric inversions in Columba; fusions and translocations in Uropelia; centric fissions in Geotrygon; fusions, translocations, para and pericentric inversions in Columbina, Leptotila, Zenaida and Scardafella. On the basis of the karyological findings the phylogenetic relationships of the Brazilian Columbiformes are discussed. © 1984 Dr W. Junk Publishers.
Resumo:
As the methods-development arm of the U.S. Department of Agriculture’s Wildlife Services program, the National Wildlife Research Center (NWRC) is charged with developing tools and information for protecting agriculture, human health and safety, and property from problems caused by wildlife, including birds. Increasingly the NWRC is being asked to provide basic ecological information on the population status of various bird species, and its role is expanding from a reactive one of providing management options to that of predicting long-term implications of various management actions. This paper describes several areas of research by NWRC scientists to address population-level questions in support of WS mission.
Resumo:
We are living in a day of change. Environmental awareness is a part of our everyday life in a way unprecedented in history. The courts, in their infinite wisdom, have initiated the joint and several liability (deep pocket) rules that make everyone at risk in almost all situations. Bird management programs, by their very nature, are extremely sensitive. Any project, if not evaluated, planned, carried out, and documented properly can result in adverse regulatory agency action, bad publicity, and even fines or lawsuits. Proper photographic documentation can play a vital part in helping to provide the necessary records to help prevent problems and/or defend yourself in case of lawsuit or regulatory action. In the preparation of this paper, we surveyed state pesticide lead agencies, state Department of Conservation (Fish and Wildlife) agencies, some U.S. Fish and Wildlife Law Enforcement personnel, and several individuals to get their reaction to and their comments about this concept of supplemental recordkeeping. Of those responding, a majority thought the concept of supplemental photographic recordkeeping would be an asset to individuals and organi¬zations conducting bird management projects.
Resumo:
Airports worldwide are at a disadvantage when it comes to being able to spot birds and warn aircrews about the location of flocks either on the ground or close to the airfield. Birds simply cannot be easily seen during the day and are nearly invisible targets for planes at night or during low visibility. Thermal imaging (infrared) devices can be used to allow ground and tower personnel to pinpoint bird locations day or night, thus giving the airport operators the ability to launch countermeasures or simply warn the aircrews. This technology is available now, though it has been predominately isolated to medical and military system modifications. The cost of these devices has dropped significantly in recent years as technology, capability, and availability have continued to increase. Davison Army Airfield (DAAF), which is located about 20 miles south of Ronald Reagan National Airport in Washington, DC, is the transient home to many bird species including an abundance of ducks, seagulls, pigeons, and migrating Canadian geese. Over the past few years, DAAF implemented a variety of measures in an attempt to control the bird hazards on the airfield. Unfortunately, when it came to controlling these birds on or near our runways and aircraft movement areas we were more reactive than proactive. We would do airfield checks several times an hour to detect and deter any birds in these areas. The deterrents used included vehicle/human presence, pyrotechnics, and the periodic use of a trained border collie. At the time, we felt like we were doing all we could to reduce the threat to aircraft and human life. It was not until a near fatal accident in October 1998, when we truly realized how dangerous our operating environment really was to aircraft at or near the airfield. It was at this time, we had a C-12 (twin-engine passenger plane) land on our primary runway at night. The tower cleared the aircraft to land, and upon touchdown to the runway the aircraft collided with a flock of geese. Neither the tower nor the crew of the aircraft saw the geese because they were obscured in the darkness. The end result was 12 dead geese and $374,000 damage to the C-12. Fortunately, there were no human fatalities, but it was painfully clear we needed to improve our method of clearing the runway at night and during low visibility conditions. It was through this realization that we ventured to the U.S. Army Communications and Electronics Command for ideas on ways to deal with our threat. It was through a sub-organization within this command, Night Vision Labs, that we realized the possibilities of modifying thermal imagery and infrared technology to detecting wildlife on airports.
Resumo:
It has been known for centuries that light (photoperiod) is possibly the major environmental stimuli affecting bird behavior and physiology. The length of the light period stimulates the breeding cycle, migration, fat deposition, and molt in most species of birds. Therefore, it is only natural that one would think of using light as a means of bird control. In fact, light has already been used as a bird control; flood-light traps have been used to trap blackbirds (Meanley 1971); Meanley states that 2000-W search lights have been used to alleviate depredation by ducks in rice fields. Pulsing light is already used on aircraft, aircraft hangers and high towers as a means of detourinq birds (Schaefer, 1968). With some positive results already obtained with light as a bird control, the next step is to see if a better light source (the laser) might not have a greater effect. The laser is basically an intense and coherent light with extreme directivity and, thus, might have greater influence on a bird’s behavioral and physiological responses.