966 resultados para Biosynthetic-enzymes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluated the effects of modified atmosphere packaging on inhibition of the development of chilling injury symptoms in 'Douradão' peach after cold storage and the possible involvement of cell wall enzymes. Fruits were harvested at the middle stadium of ripening, packed in polypropylene trays and placed inside low density polyethylene (LDPE) bags (30, 50, 60 and 75 µm of thickness) with active modified atmosphere (10 kPa CO2 + 1.5 kPa O2, balance N2). The following treatments were tested: Control: peaches held in nonwrapped trays; MA30: LDPE film - 30 µm; MA50: LDPE film - 50 µm; MA60: LDPE film - 60 µm and MA75: LDPE film - 75 µm. Fruits were kept at 1±1ºC and 90±5% relative humidity (RH) for 28 days. After 14, 21 and 28 days, samples were withdrawn from MAP and kept in air at 25±1ºC and 90±5% RH for ripening. On the day of removal and after 4 days, peaches were evaluated for woolliness incidence, pectolytic enzymes activities. The respiratory rate and ethylene synthesis were monitored during 6 days of ripening. The results showed that MA50 and MA60 treatments had positive effect on the inhibition of the development of woolly texture and reduced pectin methylesterase activity on the ripe fruits, keeping good quality of 'Douradão' peach during 28 days of cold storage. The treatments Control, MA30 and MA75 showed higher woolliness incidence and did not present marketable conditions after 14 days of cold storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the common carp to diets with varying amounts of digestible starch, provided either as pea meal (LP, HP, 30 and 46% peas, respectively) or as cereal (LW, HW, 30 and 46% wheat, respectively), was studied and compared with the response to a carbohydrate-free protein-rich diet (CF). Here we focused on the utilisation of dietary carbohydrates by examining the relationship between dietary starch intake, hepatic hexokinase activities, circulating insulin and muscle insulin receptor system. Plasma glucose concentration and hepatic high Km hexokinase (glucokinase, GK) activity were not affected by the content of digestible starch, but 6 h after feeding enzyme activity was higher in the fish fed carbohydrate diets. Similarly, low Km hexokinase (HK) activity was also higher in the fish 24 h after feeding. Fat gain and protein retention were significantly improved by increased digestible starch intake, especially in the HP group, which in turn, presented the highest plasma insulin levels. Glycogen stores were moderately increased by the ingestion of digestible starch. The number of insulin receptors was greater in the CF group than in fish on carbohydrates, except the HP group. Our results confirmed that the common carp uses dietary carbohydrates efficiently, especially when there are provided by peas. This efficiency might be related to the enhanced response of postprandial insulin observed in the HP group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute lung injury (ALI) is a syndrome of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that is not caused by left atrial hypertension. Since there is no effective treatment available, this frequent clinical syndrome significantly contributes to mortality of both medical and surgical patients. Great majority of the patients with the syndrome suffers from indirect ALI caused by systemic inflammatory response syndrome (SIRS). Sepsis, trauma, major surgery and severe burns, which represent the most common triggers of SIRS, often induce an overwhelming inflammatory reaction leading to dysfunction of several vital organs. Studies of indirect ALI due to SIRS revealed that respiratory dysfunction results from increased permeability of endothelium. Disruption of endothelial barrier allows extravasation of protein-rich liquid and neutrophils to pulmonary parenchyma. Both under normal conditions and in inflammation, endothelial barrier function is regulated by numerous mechanisms. Endothelial enzymes represent one of the critical control points of vascular permeability and leukocyte trafficking. Some endothelial enzymes prevent disruption of endothelial barrier by production of anti-inflammatory substances. For instance, nitric oxide synthase (NOS) down-regulates leukocyte extravasation in inflammation by generation of nitric oxide. CD73 decreases vascular leakage and neutrophil emigration to inflamed tissues by generation of adenosine. On the other hand, vascular adhesion protein-1 (VAP-1) mediates leukocyte trafficking to the sites of inflammation both by generation of pro-inflammatory substances and by physically acting as an adhesion molecule. The aims of this study were to define the role of endothelial enzymes NOS, CD73 and VAP-1 in acute lung injury. Our data suggest that increasing substrate availability for NOS reduces both lung edema and neutrophil infiltration and this effect is not enhanced by concomitant administration of antioxidants. CD73 protects from vascular leakage in ALI and its up-regulation by interferon-β represents a novel therapeutic strategy for treatment of this syndrome. Enzymatic activity of VAP-1 mediates neutrophil infiltration in ALI and its inhibition represents an attractive approach to treat ALI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolates of Colletotrichum gloeosporioides (ISO-1, ISO-2, ISO-3, ISO-4, ISO-5 and ISO-6), the causal agent of anthracnose disease on mango fruits, were characterized by electrophoretic patterns of total proteins and esterase in polyacrylamida gel, and also, by production of extracellular enzymes on specific solid substrate. The electrophoretic analysis showed variation in number, intensity of coloration and position of the bands in the gel at each studied system tested. In contrast to the monomorphic behavior to total proteins, high esterase polymorfism was observed indicating difference among isolates. All isolates showed the activity of extracellular enzymes such as amylase, lipase, and protease with some variation among them. The proteolitic activity seemed to be more accentuated than the two other enzymes studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic pyrophosphatases (PPases) are essential enzymes for every living cell. PPases provide the necessary thermodynamic pull for many biosynthetic reactions by hydrolyzing pyrophosphate. There are two types of PPases: integral membrane-bound and soluble enzymes. The latter type is divided into two non-homologous protein families, I and II. Family I PPases are present in all kingdoms of life, whereas family II PPases are only found in prokaryotes, including archae. Family I PPases, particularly that from Saccharomyces cerevisiae, are among the most extensively characterized phosphoryl transfer enzymes. In the present study, we have solved the structures of wild-type and seven active site variants of S. cerevisiae PPase bound to its natural metal cofactor, magnesium ion. These structures have facilitated derivation of the complete enzyme reaction scheme for PPase, fulfilling structures of all the reaction intermediates. The main focus in this study was on a novel subfamily of family II PPases (CBSPPase) containing a large insert formed by two CBS domains and a DRTGG domain within the catalytic domain. The CBS domain (named after cystathionine beta-synthase in which it was initially identified) usually occurs as tandem pairs with two or four copies in many proteins in all kingdoms of life. The structure formed by a pair of CBS domains is also known as a Bateman domain. CBS domains function as regulatory units, with adenylate ligands as the main effectors. The DRTGG domain (designated based on its most conserved residues) occurs less frequently and only in prokaryotes. Often, the domain co-exists with CBS domains, but its function remains unknown. The key objective of the current study was to explore the structural rearrangements in the CBS domains induced by regulatory adenylate ligands and their functional consequences. Two CBS-PPases were investigated, one from Clostridium perfringens (cpCBS-PPase) containing both CBS and DRTGG domains in its regulatory region and the other from Moorella thermoacetica (mt CBS-PPase) lacking the DRTGG domain. We additionally constructed a separate regulatory region of cpCBS-PPase (cpCBS). Both full-length enzymes and cpCBS formed homodimers. Two structures of the regulatory region of cpCBS-PPase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate, were solved. The structures were significantly different, providing information on the structural pathway from bound adenylates to the interface between the regulatory and catalytic parts. To our knowledge, these are the first reported structures of a regulated CBS enzyme, which reveal large conformational changes upon regulator binding. The activator-bound structure was more open, consistent with the different thermostabilities of the activator- and inhibitor-bound forms of cpCBS-PPase. The results of the functional studies on wild-type and variant CBS-PPases provide support for inferences made on the basis of structural analyses. Moreover, these findings indicate that CBS-PPase activity is highly sensitive to adenine nucleotide distribution between AMP, ADP and ATP, and hence to the energy level of the cell. CBS-PPase activity is markedly inhibited at low energy levels, allowing PPi energy to be used for cell survival instead of being converted into heat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthesis, the process in which carbon dioxide is converted into sugars using the energy of sunlight, is vital for heterotrophic life on Earth. In plants, photosynthesis takes place in specific organelles called chloroplasts. During chloroplast biogenesis, light is a prerequisite for the development of functional photosynthetic structures. In addition to photosynthesis, a number of other metabolic processes such as nitrogen assimilation, the biosynthesis of fatty acids, amino acids, vitamins, and hormones are localized to plant chloroplasts. The biosynthetic pathways in chloroplasts are tightly regulated, and especially the reduction/oxidation (redox) signals play important roles in controlling many developmental and metabolic processes in chloroplasts. Thioredoxins are universal regulatory proteins that mediate redox signals in chloroplasts. They are able to modify the structure and function of their target proteins by reduction of disulfide bonds. Oxidized thioredoxins are restored via the action of thioredoxin reductases. Two thioredoxin reductase systems exist in plant chloroplasts, the NADPHdependent thioredoxin reductase C (NTRC) and ferredoxin-thioredoxin reductase (FTR). The ferredoxin-thioredoxin system that is linked to photosynthetic light reactions is involved in light-activation of chloroplast proteins. NADPH can be produced via both the photosynthetic electron transfer reactions in light, and in darkness via the pentose phosphate pathway. These different pathways of NADPH production enable the regulation of diverse metabolic pathways in chloroplasts by the NADPH-dependent thioredoxin system. In this thesis, the role of NADPH-dependent thioredoxin system in the redox-control of chloroplast development and metabolism was studied by characterization of Arabidopsis thaliana T-DNA insertion lines of NTRC gene (ntrc) and by identification of chloroplast proteins regulated by NTRC. The ntrc plants showed the strongest visible phenotypes when grown under short 8-h photoperiod. This indicates that i) chloroplast NADPH-dependent thioredoxin system is non-redundant to ferredoxinthioredoxin system and that ii) NTRC particularly controls the chloroplast processes that are easily imbalanced in daily light/dark rhythms with short day and long night. I identified four processes and the redox-regulated proteins therein that are potentially regulated by NTRC; i) chloroplast development, ii) starch biosynthesis, iii) aromatic amino acid biosynthesis and iv) detoxification of H2O2. Such regulation can be achieved directly by modulating the redox state of intramolecular or intermolecular disulfide bridges of enzymes, or by protecting enzymes from oxidation in conjunction with 2-cysteine peroxiredoxins. This thesis work also demonstrated that the enzymatic antioxidant systems in chloroplasts, ascorbate peroxidases, superoxide dismutase and NTRC-dependent 2-cysteine peroxiredoxins are tightly linked up to prevent the detrimental accumulation of reactive oxygen species in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Infection with Escherichia coli (E. coli) is a common disease in poultry industry. The use of antibiotics to treat diseases is facing serious criticism and concerns. The medicinal plants may be effective alternatives because of their multiplex activities. The aim of this study was to investigate the effects of cinnamon extract on the levels of liver enzymes, tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB) gene expressions in liver of broiler chickens infected with E. coli. Ninety Ross-308 broilers were divided into healthy or E. coli-infected groups, receiving normal or cinnamon extract (in concentrations of 100 or 200mg/kg of food) supplemented diets. E. coli suspension (108cfu) was injected subcutaneously after 12 days cinnamon administration. Seventy-two hours after E. coli injection, the blood samples were taken for biochemical analysis of liver enzymes in serum (spectrophotometrically), and liver tissue samples were obtained for detection of gene expression of inflammatory markers TNF-α and NF-κB, using real-time PCR. Infection with E. coli significantly increased the levels of TNF-α and NF-κB gene expressions as well as some liver enzymes including creatine-kinase (CK), lactate-dehydrogenase (LDH), alanine-transferase (ALT) and aspartate-transferase (AST) as compared with control group (P<0.05). Pre-administration of cinnamon extract in broilers diet (in both concentrations) significantly reduced the tissue levels of TNF-α and NF-κB gene expressions and enzymes CK and ALT in serum of broiler chickens inoculated with E. coli in comparison with E. coli group (P<0.05 and P<0.01). The levels of LDH and AST were significantly decreased only by 200mg/kg cinnamon extract in infected broilers. The level of alkaline-phosphatase (ALP) was not affected in any groups. Pre-administration of cinnamon extract in diets of broiler chickens inoculated with E. coli could significantly reduce the gene expression levels of pro-inflammatory mediators and liver enzymes activities, thereby protecting the liver against this pathologic condition.