930 resultados para Bion, of Phlossa near Smyrna.
Resumo:
Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past-a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600 years. The recurrence period of earthquakes may range up to 1,000 years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.
Resumo:
The paper reports effect of small ternary addition of In on the microstructure, mechanical property and oxidation behaviour of a near eutectic suction cast Nb-19.1 at-%Si-1.5 at-%In alloy. The observed microstructure consists of a combination of two kinds of lamellar structure. They are metal-intermetallic combinations of Nb-ss-beta-Nb5Si3 and Nb-ss-alpha-Nb5Si3 respectively having 40-60 nm lamellar spacings. The alloy gives compressive strength of 3 GPa and engineering strain of similar to 3% at room temperature. The composite structure also exhibits a large improvement in oxidation resistance at high temperature (1000 degrees C).
Resumo:
The flow characteristics of a near eutectic Al-Si based cast alloy have been examined in compression at strain rates varying from 3 x 10(-4) to 10(2) s(-1) and at three different temperatures, i.e., room temperature (RT), 100 degrees C and 200 degrees C. The dependence of the flow behavior on heat treatment is studied by testing the alloy in non-heat treated (NHT) and heat treated (HT) conditions. The heat treatment has strong influence on strain rate sensitivity (SRS), strength and work hardening behavior of the alloy. It is observed that the strength of the alloy increases with increase in strain rate and it increases more rapidly above the strain rate of 10(-1) s(-1) in HT condition at all the temperatures, and at 100 degrees C and 200 degrees C in NHT condition. The thermally dependent process taking place in the HT matrix is responsible for the observed greater SRS in HT condition. The alloy in HT condition exhibits a larger work hardening rate than in NHT condition during initial stages of straining. However, the hardening rate decreases more sharply at higher strains in HT condition due to precipitate shearing and higher rate of Si particle fracture. Thermal hardening is observed at 200 degrees C in NHT condition due to precipitate formation, which results in increased SRS at higher temperatures. Thermal softening is observed in HT condition at 200 C due to precipitate coarsening, which leads to a decrease in SRS at higher temperatures. Stress simulations by a finite element method support the experimentally observed particle and matrix fracture behavior. A negative SRS and serrated flow are observed in the lower strain rate regime (3 x 10(-4)-10(-2) s(-1)) at RT and 100 degrees C, in both NHT and HT conditions. The observations show that both dynamic strain aging (DSA) and precipitate shearing play a role in serrated flow. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The flow characteristics of a near-eutectic heat-treated Al-Si based cast alloy have been examined in compression at strain rates varying from 3 x 10(-4) to 10(2) s(-1) and at three different temperatures, i.e., room temperature (RT), 100 degrees C and 200 degrees C. The dependence of flow behavior on modification is examined by testing the alloy in both the unmodified and modified conditions. Modification has strong influence on strain rate sensitivity (SRS), strength and work hardening behavior of the alloy. The strength of the alloy is found to increase with increase in strain rate for both the conditions. The increase is more rapid above the strain rate of 10(-1) s(-1) for the unmodified alloy at all the temperatures. This rapid increase is observed at 1 s(-1) at RT and 100 degrees C, and at 10(-2) s(-1) at 200 degrees C for the modified alloy. The thermally dependent process of the Al matrix is rate controlling in the unmodified alloy. On the other hand, the thermally dependent process of both Al matrix and Si particles are rate controlling, which is responsible for the higher strain rate sensitivity (SRS) in the modified alloy. The unmodified alloy exhibits a larger work hardening rate than the modified alloy during the initial stages of straining due to fiber loading of unmodified Si particles. However, the hardening rate decreases sharply at higher strains for the unmodified alloy due to a higher rate of Si particle fracture. Thermal softening is observed for both alloys at 200 degrees C due to precipitate coarsening, which leads to a decrease in SRS at higher temperatures. Stress simulations by microstructure based finite element method support the experimentally observed particle and matrix fracture behavior. Negative SRS and serrated flow are observed at lower strain rate regime (3 x 10(-4) to 10(-2) s(-1)) at RT and 100 degrees C, in both alloys. The critical onset strain is found to be lower and the magnitude of serration is found to be higher for the modified alloy, which suggests that, in addition to dynamic strain aging, Si particle size and morphology also play a role in serrated flow. (C) 2015 Elsevier Inc All rights reserved.
Resumo:
ZnO nanotetrapods with hexagonal crown were synthesized on a silicon wafer by vapor transport process at a low temperature of 630 °C and normal pressure without the presence of catalysts. The results demonstrated that the as-synthesized products with slender legs and regular hexagonal crown are single crystal with wurtzite structure and preferentially grow up along 001 direction. Photoluminescence spectra revealed that the green emission originated from oxygen vacancies overwhelmed that of the near-band-edge ultraviolet peak, which suggests the peculiar-shaped nanotetrapods may have potential applications in multichannel nano-optoelectronic devices.
Resumo:
Regular ZnO tetrapods with different morphologies have been obtained on Si(100) substrate via the chemical vapour deposition approach. Varying the growth temperature and gas rate, we have obtained different structured ZnO materials: tetrapods with a large hexagonal crown, a flat top and a small hexagonal crown. The results suggest that these tetrapods are all single crystals with a wurtzite structure that grow along the (0001) direction. However, photoluminescence spectra shows that their optical properties are quite different: for those with large hexagonal crown, the green emission overwhelms that of the near band-edge (NBE) ultraviolet (UV) peak, while others have only a strong NBE UV peak at ~386 nm.
Resumo:
Turbulence and aeroacoustic noise high-order accurate schemes are required, and preferred, for solving complex flow fields with multi-scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth-order traditional and compact finite difference approximation. The comparison shows that the sixth-order accurate super compact method has higher resolving efficiency. The sixth-order super compact method, with a three-stage Runge-Kutta method for approximation of the compressible Navier-Stokes equations, is used to solve the complex flow structures induced by vortex-shock interactions. The basic nature of the near-field sound generated by interaction is studied.
Resumo:
The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas
Resumo:
By applying for molecular dynamics (MD) simulation and Griffith fracture criterion, the brittle behavior of crack extension of mode I type is investigated. The critical stress intensity factor (SIF)K-Ic(MD) of crack extension is calculated, and the evolution of atoms near crack tip is observed. It is found that K-Ic(MD) is in good agreement with the Griffith ftacture criterion K-Ic(Griffith).
Resumo:
Preliminary results show microradiography and scanning electron microscopy (SEM) to be more accurate methods of accessing growth layer groups (GLGs) in the teeth of Tursiops truncatus than transmitted light microscopy. Microradiography shows the rhythmic deposition of mineral as alternating radiopaque and radiolucent layers. It improves the resolution of GLGs near the pulp cavity in older individuals, better than either SEM or light microscopy. SEM of etched sections show GLGs as ridges and grooves which are easily counted from the micrograph. SEM also shows GLGs to be composed of fine incremental layers of uniform size and number which may allow for more precise age determination. Accessory layers are usually hypomineralized layers within the hypermineralized layer of the GLG and are more readily distinguishable as such in SEM of etched sections and microradiographs than in thin sections viewed under transmitted light. The neonatal line is hypomineralized, appearing translucent under transmitted light, radiolucent in a microradiograph, and as a ridge in SEM. (PDF contains 6 pages.)
Resumo:
We investigated within- and between-reader precision in estimating age for northern offshore spotted dolphins and possible effects on precision from the sex and age-class of specimens. Age was estimated from patterns of growth layer groups i n the dentine and cementum of the dolphins' teeth. Each specimen was aged at least three times by each of two persons. Two data samples were studied. The first comprised 800 of each sex from animals collected during 1973-78. The second included 45 females collected during 1981. There were significant, generally downward trends through time in the estimates from multiple readings of the 1973-78 data. These trends were slight, and age distributions from last readings and mean estimates per specimen appeared to be homogeneous. The largest factor affecting precision in the 1973-78 data set was between-reader variation. In light of the relatively high within-reader precision (trends considered), the consistent between-reader differences suggest a problem of accuracy rather than precision for this series. Within-reader coefficients of variation averaged approximately 7% and 11%. Pooling the data resulted i n an average coefficient of variation near 16%. Within- and between-reader precision were higher for the 1981 sample, and the data homogeneous over both factors. CVs averaged near 5% and 6% for the two readers. These results point to further refinements in reading the 1981 series. Properties of the 1981 sample may be partly responsible for greater precision: by chance there were proportionately fewer older dolphins included, and preparation and selection criteria were probably more stringent. (PDF contains 35 pages.)
Resumo:
ENGLISH: From morphometric data, tagging results and reaction of the stock to fishing, it is inferred that the yellowfin tuna of the Eastern Pacific form a distinct population which intermingles little, if at all, with populations to the westward. Excellent statistics of catch and effort, and records of total catch, available since 1934, during rapid growth of the fishery, have made possible application of a generalized mathematical predator-prey model to estimate the effect of fishing on the population, and the average abundance and yield corresponding to different amounts of fishing effort, and also to estimate the rate of fishing mortality per unit of effort. From serial samples of size composition of catches, and from tagging experiments, it has been possible to determine rates of growth and of total mortality. These kinds of information permit application of the catch-per-recruit model of Beverton and Holt. Combination of the results of application of the Beverton and Holt model and of the generalized predator-prey model, leads to inference of the relationship between stock size and recruitment. The form of the relationship is remarkably similar to the theoretical model developed by W. E. Ricker. These studies, based on the data of the near-surface fishery by baitboats and purse seiners, indicate clearly that the increased intensity of fishing has caused diminution of the stocks to the point where they are somewhat "overfished"-that is, incapable of supporting the maximum sustainable average harvest. SPANISH: De los datos morfométricos, de los resultados de las marcaciones y de la reacción del stock a la pesca, se infiere que el atún aleta amarilla del Pacífico oriental forma una población diferente que se mezcla poco, si es que llega a mezclarse, con las poblaciones del oeste. Las excelentes estadísticas de la captura y el esfuerzo y los registros de la pesca global disponibles desde 1934, durante el rápido crecimiento de la pesquería, han hecho posible la aplicación de un modelo matemático generalizado depredador-presa para estimar el efecto de la pesca en la población y el promedio de la abundancia y del rendimiento correspondientes a los diferentes valores del esfuerzo de pesca, y también para estimar la tasa de la mortalidad de pesca por unidad de esfuerzo. Gracias a las muestras en serie de la composición de tamaños de las capturas y a los experimentos de marcación, ha sido posible determinar las tasas del crecimiento y de la mortalidad total. Estos tipos de información permiten la aplicación del modelo de la captura-porrecluta de Beverton y Holt. La combinación de los resultados de la aplicación del modelo de Beverton y Holt y del modelo generalizado depredador-presa, conduce a la inferencia de la relación entre el tamaño del stock y el reclutamiento. La forma de la relación es notoriamente similar al modelo teórico desarrollado por W. E. Ricker. Estos estudios, basados en los datos de la pesquería cerca de la superficie efectuada por barcos de carnada y rederos, indican claramente que el aumento de la intensidad de la pesca ha causado la disminución de los stocks hasta el punto de dejarlos algo "superexplotados", o sea, incapacitados para mantener una producción máxima promedio. (PDF contains 50 pages.)
Resumo:
The Northridge earthquake of January 17, 1994, highlighted the two previously known problems of premature fracturing of connections and the damaging capabilities of near-source ground motion pulses. Large ground motions had not been experienced in a city with tall steel moment-frame buildings before. Some steel buildings exhibited fracture of welded connections or other types of structural degradation.
A sophisticated three-dimensional nonlinear inelastic program is developed that can accurately model many nonlinear properties commonly ignored or approximated in other programs. The program can assess and predict severely inelastic response of steel buildings due to strong ground motions, including collapse.
Three-dimensional fiber and segment discretization of elements is presented in this work. This element and its two-dimensional counterpart are capable of modeling various geometric and material nonlinearities such as moment amplification, spread of plasticity and connection fracture. In addition to introducing a three-dimensional element discretization, this work presents three-dimensional constraints that limit the number of equations required to solve various three-dimensional problems consisting of intersecting planar frames.
Two buildings damaged in the Northridge earthquake are investigated to verify the ability of the program to match the level of response and the extent and location of damage measured. The program is used to predict response of larger near-source ground motions using the properties determined from the matched response.
A third building is studied to assess three-dimensional effects on a realistic irregular building in the inelastic range of response considering earthquake directivity. Damage levels are observed to be significantly affected by directivity and torsional response.
Several strong recorded ground motions clearly exceed code-based levels. Properly designed buildings can have drifts exceeding code specified levels due to these ground motions. The strongest ground motions caused collapse if fracture was included in the model. Near-source ground displacement pulses can cause columns to yield prior to weaker-designed beams. Damage in tall buildings correlates better with peak-to-peak displacements than with peak-to-peak accelerations.
Dynamic response of tall buildings shows that higher mode response can cause more damage than first mode response. Leaking of energy between modes in conjunction with damage can cause torsional behavior that is not anticipated.
Various response parameters are used for all three buildings to determine what correlations can be made for inelastic building response. Damage levels can be dramatically different based on the inelastic model used. Damage does not correlate well with several common response parameters.
Realistic modeling of material properties and structural behavior is of great value for understanding the performance of tall buildings due to earthquake excitations.
Resumo:
Theoretical analyses of x-ray diffraction phase contrast imaging and near field phase retrieval method are presented. A new variant of the near field intensity distribution is derived with the optimal phase imaging distance and spatial frequency of object taken into account. Numerical examples of phase retrieval using simulated data are also given. On the above basis, the influence of detecting distance and polychroism of radiation on the phase contrast image and the retrieved phase distribution are discussed. The present results should be useful in the practical application of in-line phase contrast imaging.