839 resultados para Biomedical applications


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate), P(3HB), produced from Bacillus cereus SPV using a simple glucose feeding strategy was used to fabricate P(3HB) microspheres using a solid-in-oil-water (s/o/w) technique. For this study, several parameters such as polymer concentration, surfactant and stirring rates were varied in order to determine their effect on microsphere characteristics. The average size of the microspheres was in the range of 2 μm to 1.54 μm with specific surface areas varying between 9.60 m(2)/g and 6.05 m(2)/g. Low stirring speed of 300 rpm produced slightly larger microspheres when compared to the smaller microspheres produced when the stirring velocity was increased to 800 rpm. The surface morphology of the microspheres after solvent evaporation appeared smooth when observed under SEM. Gentamicin was encapsulated within these P(3HB) microspheres and the release kinetics from the microspheres exhibiting the highest encapsulation efficiency, which was 48%, was investigated. The in vitro release of gentamicin was bimodal, an initial burst release was observed followed by a diffusion mediated sustained release. Biodegradable P(3HB) microspheres developed in this research has shown high potential to be used in various biomedical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les acides biliaires sont des composés naturels existants dans le corps humain. Leur biocompatibilité, leur caractère amphiphile et la rigidité de leur noyau stéroïdien, ainsi que l’excellent contrôle de leurs modifications chimiques, en font de remarquables candidats pour la préparation de matériaux biodégradables pour le relargage de médicaments et l'ingénierie tissulaire. Nous avons préparé une variété de polymères à base d’acides biliaires ayant de hautes masses molaires. Des monomères macrocycliques ont été synthétisés à partir de diènes composés de chaînes alkyles flexibles attachées à un noyau d'acide biliaire via des liens esters ou amides. Ces synthèses ont été réalisées par la fermeture de cycle par métathèse, utilisant le catalyseur de Grubbs de première génération. Les macrocycles obtenus ont ensuite été polymérisés par ouverture de cycle, entropiquement induite le catalyseur de Grubbs de seconde génération. Des copolymères ont également été préparés à partir de monolactones d'acide ricinoléique et de monomères cycliques de triester d’acide cholique via la même méthode. Les propriétés thermiques et mécaniques et la dégradabilité de ces polymères ont été étudiées. Elles peuvent être modulées en modifiant les différents groupes fonctionnels décorant l’acide biliaire et en ayant recours à la copolymérisation. La variation des caractéristiques physiques de ces polymères biocompatibles permet de moduler d’autres propriétés utiles, tel que l’effet de mémoire de forme qui est important pour des applications biomédicales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Part of the research described in this thesis is conducted in collaboration with Centre d' étude et de Recherche sur les Macromolécules (CERM), Université de Liège, Sart-Tilman, Belgium

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les polymères sensibles à des stimuli ont été largement étudiés ces dernières années notamment en vue d’applications biomédicales. Ceux-ci ont la capacité de changer leurs propriétés de solubilité face à des variations de pH ou de température. Le but de cette thèse concerne la synthèse et l’étude de nouveaux diblocs composés de deux copolymères aléatoires. Les polymères ont été obtenus par polymérisation radicalaire contrôlée du type RAFT (reversible addition-fragmentation chain-transfer). Les polymères à bloc sont formés de monomères de méthacrylates et/ou d’acrylamides dont les polymères sont reconnus comme thermosensibles et sensible au pH. Premièrement, les copolymères à bloc aléatoires du type AnBm-b-ApBq ont été synthétisés à partir de N-n-propylacrylamide (nPA) et de N-ethylacrylamide (EA), respectivement A et B, par polymérisation RAFT. La cinétique de copolymérisation des poly(nPAx-co-EA1-x)-block-poly(nPAy-co-EA1-y) et leur composition ont été étudiées afin de caractériser et évaluer les propriétés physico-chimiques des copolymères à bloc aléatoires avec un faible indice de polydispersité . Leurs caractères thermosensibles ont été étudiés en solution aqueuse par spectroscopie UV-Vis, turbidimétrie et analyse de la diffusion dynamique de la lumière (DLS). Les points de trouble (CP) observés des blocs individuels et des copolymères formés démontrent des phases de transitions bien définies lors de la chauffe. Un grand nombre de macromolécules naturels démontrent des réponses aux stimuli externes tels que le pH et la température. Aussi, un troisième monomère, 2-diethylaminoethyl methacrylate (DEAEMA), a été ajouté à la synthèse pour former des copolymères à bloc , sous la forme AnBm-b-ApCq , et qui offre une double réponse (pH et température), modulable en solution. Ce type de polymère, aux multiples stimuli, de la forme poly(nPAx-co-DEAEMA1-x)-block-poly(nPAy-co-EA1-y), a lui aussi été synthétisé par polymérisation RAFT. Les résultats indiquent des copolymères à bloc aléatoires aux propriétés physico-chimiques différentes des premiers diblocs, notamment leur solubilité face aux variations de pH et de température. Enfin, le changement d’hydrophobie des copolymères a été étudié en faisant varier la longueur des séquences des blocs. Il est reconnu que la longueur relative des blocs affecte les mécanismes d’agrégation d’un copolymère amphiphile. Ainsi avec différents stimuli de pH et/ou de température, les expériences effectuées sur des copolymères à blocaléatoires de différentes longueurs montrent des comportements d’agrégation intéressants, évoluant sous différentes formes micellaires, d’agrégats et de vésicules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Improving the appearance of the trunk is an important goal of scoliosis surgical treatment, mainly in patients' eyes. Unfortunately, existing methods for assessing postoperative trunk appearance are rather subjective as they rely on a qualitative evaluation of the trunk shape. In this paper, an objective method is proposed to quantify the changes in trunk shape after surgery. Using a non-invasive optical system, the whole trunk surface is acquired and reconstructed in 3D. Trunk shape is described by two functional measurements spanning the trunk length: the lateral deviation and the axial rotation. To measure the pre and postoperative differences, a correction rate is computed for both measurements. On a cohort of 36 scoliosis patients with the same spinal curve type who underwent the same surgical approach, surgery achieved a very good correction of the lateral trunk deviation (median correction of 76%) and a poor to moderate correction of the back axial rotation (median correction of 19%). These results demonstrate that after surgery, patients are still confronted with residual trunk deformity, mainly a persisting hump on the back. That can be explained by the fact that current scoliosis assessment and treatment planning are based solely on radiographic measures of the spinal deformity and do not take trunk deformity into consideration. It is believed that with our novel quantitative trunk shape descriptor, clinicians and surgeons can now objectively assess trunk deformity and postoperative shape and propose new treatment strategies that could better address patients' concern about their appearance. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly transparent, luminescent and biocompatible ZnO quantum dots were prepared in water, methanol, and ethanol using liquid-phase pulsed laser ablation technique without using any surfactant. Transmission electron microscopy analysis confirmed the formation of good crystalline ZnO quantum dots with a uniform size distribution of 7 nm. The emission wavelength could be varied by varying the native defect chemistry of ZnO quantum dots and the laser fluence. Highly luminescent nontoxic ZnO quantum dots have exciting application potential as florescent probes in biomedical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT–SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at ∼110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT–SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT–SPION composite can be envisaged as a good agent for various biomedical applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic nanoparticles attract increasing attention because of their current and potential biomedical applications, such as, magnetically targeted and controlled drug delivery, magnetic hyperthermia and magnetic extraction. Increased magnetization can lead to improved performance in targeting and retention in drug delivery and a higher efficiency in biomaterials extraction. We reported an approach to synthesize iron contained magnetic nanoparticles with high magnetization and good oxidation resistibility by pyrolysis of iron pentacarbonyl (Fe(CO)[subscript 5]) in methane (CH[subscript 4]). Using the high reactivity of Fe nanoparticles, decomposition of CH[subscript 4] on the Fe nanoparticles leads to the formation of nanocrystalline iron carbides at a temperature below 260°C. Structural investigation indicated that the as-synthesized nanoparticles contained crystalline bcc Fe, iron carbides and spinel iron oxide. The Mössbauer and DSC results testified that the as-synthesized nanoparticle contained three crystalline iron carbide phases, which converted to Fe[subscript 3]C after a heat treatment. Surface analysis suggested that the as-synthesized and subsequently heated iron-iron carbide particles were coated by iron oxide, which originated from oxidization of surface Fe atoms. The heat-treated nanoparticles exhibited a magnetization of 160 emu/g, which is two times of that of currently used spinel iron oxide nanoparticles. After heating in an acidic solution with a pH value of 5 at 60°C for 20 h, the nanoparticles retained 90 percentage of the magnetization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free-radical copolymerization of 2-hydroxyethyl methacrylate with 2-hydroxyethyl acrylate can be successively utilized for the synthesis of water-soluble polymers and hydrogels with excellent physicochemical properties, thus showing promise for pharmaceutical and biomedical applications. In the work presented it has been demonstrated that water-soluble copolymers based on 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate exhibit lower critical solution temperature in aqueous solutions, whereas the corresponding high molecular weight homopolymers do not have this unique property. The temperature-induced transitions observed upon heating the aqueous solutions of these copolymers proceed via liquid−liquid phase separation. The hydrogels were also synthesized by copolymerizing 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate in the absence of a bifunctional cross-linker. The cross-linking of these copolymers during copolymerization is believed to be due to the presence of bifunctional admixtures or transesterification reactions. Transparency, swelling behavior, mechanical properties, and porosity of the hydrogels are dependent upon the monomer ratio in the copolymers. Hydrogel samples containing more 2-hydroxyethyl methacrylate are less transparent, have lower swelling capacity, higher elastic moduli, and pores of smaller size. The assessment of the biocompatibility of the copolymers using the slug mucosal irritation test revealed that they are also less irritant than poly(acrylic acid).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fourier transform infrared (FTIR) spectroscopic imaging using a focal plane array detector has been used to study atherosclerotic arteries with a spatial resolution of 3-4 mum, i.e., at a level that is comparable with cellular dimensions. Such high spatial resolution is made possible using a micro-attenuated total reflection (ATR) germanium objective with a high refractive index and therefore high numerical aperture. This micro-ATR approach has enabled small structures within the vessel wall to be imaged for the first time by FTIR. Structures observed include the elastic lamellae of the tunica media and a heterogeneous distribution of small clusters of cholesterol esters within an atherosclerotic lesion, which may correspond to foam cells. A macro-ATR imaging method was also applied, which involves the use of a diamond macro-ATR accessory. This study of atherosclerosis is presented as an illustrative example of the wider potential of these A TR imaging approaches for cardiovascular medicine and biomedical applications. (C) 2004 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystallization kinetics of each constituent of poly(p-dioxanone)-b-poly(epsilon-caprolactone) diblock copolymers (PPDX-b-PCL) has been determined in a wide composition range by differential scanning calorimetry and compared to that of the equivalent homopolymers. Spherulitic growth rates were also measured by polarized optical microscopy while atomic force microscopy was employed to reveal the morphology of one selected diblock copolymer. It was found that crystallization drives structure formation and both components form lamellae within mixed spherulitic superstructures. The overall isothermal crystallization kinetics of the PPDX block at high temperatures, where the PCL is molten, was determined by accelerating the kinetics through a previous self-nucleation procedure. The application of the Lauritzen and Ho. man theory to overall growth rate data yielded successful results for PPDX and the diblock copolymers. The theory was applied to isothermal overall crystallization of previously self-nucleated PPDX ( where growth should be the dominant factor if self-nucleation was effective) and the energetic parameters obtained were perfectly matched with those obtained from spherulitic growth rate data of neat PPDX. A quantitative estimate of the increase in the energy barrier for crystallization of the PPDX block, caused by the covalently bonded molten PCL as compared to homo-PPDX, was thus determined. This energy increase can dramatically reduce the crystallization rate of the PPDX block as compared to homo-PPDX. In the case of the PCL block, both the crystallization kinetics and the self-nucleation results indicate that the PPDX is able to nucleate the PCL within the copolymers and heterogeneous nucleation is always present regardless of composition. Finally, preliminary results on hydrolytic degradation showed that the presence of relatively small amounts of PCL within PPDX-bPCL copolymers substantially retards hydrolytic degradation of the material in comparison to homo-PPDX. This increased resistance to hydrolysis is a complex function of composition and its knowledge may allow future prediction of the lifetime of the material for biomedical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O titânio e suas ligas são os materiais mais comumente utilizados na substituição de tecidos duros por possuírem resistência mecânica, biocompatibilidade, resistência à corrosão e fácil manipulação. Embora o titânio possua várias vantagens sobre outros biomateriais, seu uso em longo prazo pode ocasionar problemas de rejeição. A modificação da superfície do titânio a fim de criar microrrugosidades é uma estratégia efetiva para melhorar a adesão e proliferação celular sobre implantes. Quando um implante danifica ou invade as barreiras epitelial e das mucosas, pode servir como reservatório para microrganismos e desta forma predispor à infecção. Neste sentido, o objetivo deste trabalho foi modificar a superfície do titânio, utilizando nanopartículas de prata (Ag) e lectina, a fim de melhorar a sua biocompatibilidade e conferir propriedades antimicrobianas a este material. O racional por trás destas mudanças é que a criação de uma topografia em nanoescala pode contribuir para mimetizar o ambiente celular melhorando a osseointegração e diminuindo o risco de infecção. Em nosso estudo, nanotubos de dióxido de titânio (NTs-TiO2) com estrutura bem distribuída e organizada, com diâmetro em torno de 70–80nm, foram sintetizados por anodização eletroquímica e decorados com nanopartículas de Ag usando a técnica de layer-by-layer (LbL), enquanto a lectina do peixe Oreochromis niloticus (OniL) foi incorporada aos NTs-TiO2 por spin coating. Estas amostras foram caracterizadas e avaliadas quanto a sua citotoxidade, adesão celular, potencial osteogênico e atividade bactericida. Nossos resultados mostraram que tanto as nanopartículas de Ag, como a Onil foram incorporadas com sucesso à superfície dos NTs-TiO2. Entretanto nossas preparações de LbL não foram capazes de melhorar a biocompatibilidade ou inibir o crescimento de bactérias nos NTs-TiO2. Por outro lado, a funcionalização dos NTs-TiO2 com a OniL induziu eficientemente a adesão e proliferação dos osteoblastos. Nossos resultados apontam para o uso da lectina OniL para melhorar a qualidade dos implantes de NT-TiO2 existentes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.