930 resultados para Biodiversity Management
A decision framework for considering climate change adaptation in biodiversity conservation planning
Resumo:
General principles of climate change adaptation for biodiversity have been formulated, but do not help prioritize actions. This is inhibiting their integration into conservation planning. We address this need with a decision framework that identifies and prioritizes actions to increase the adaptive capacity of species. The framework classifies species according to their current distribution and projected future climate space, as a basis for selecting appropriate decision trees. Decisions rely primarily on expert opinion, with additional information from quantitative models, where data are available. The framework considers in-situ management, followed by interventions at the landscape scale and finally translocation or ex-situ conservation. Synthesis and applications: From eight case studies, the key interventions identified for integrating climate change adaptation into conservation planning were local management and expansion of sites. We anticipate that, in combination with consideration of socio-economic and local factors, the decision framework will be a useful tool for conservation and natural resource managers to integrate adaptation measures into conservation plans.
Resumo:
Recent, fervent international dialogue concerning the existence and magnitude of impacts associated with aquaculture has had both positive and negative outcomes. Aquaculture stakeholders have become sensitized to requirements for improved environmental management of aquaculture. on the other hand, in some cases aquaculture development has been negatively affected by some of the unwarranted and unproved allegations to the detriment of the stakeholders most in need of aquaculture development (i.e., resource users, particularly the poor, who are dependent on natural resources). These resource users are targeted by, and directly influence biodiversity and conservation agendas; hence the need to understand how to gain their active participation. This discussion focuses on examples of how aquaculture research and development can be a useful tool or strategy for resource management initiatives and provide tangible positive including increased stakeholder participation and cooperation, offering alternatives to resource extraction and use in otherwise difficult or intransigent resource management conflicts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biodiversity is organised into complex ecological networks of interacting species in local ecosystems, but our knowledge about the effects of habitat fragmentation on such systems remains limited. We consider the effects of this key driver of both local and global change on both mutualistic and antagonistic systems at different levels of biological organisation and spatiotemporal scales.There is a complex interplay of patterns and processes related to the variation and influence of spatial, temporal and biotic drivers in ecological networks. Species traits (e.g. body size, dispersal ability) play an important role in determining how networks respond to fragment size and isolation, edge shape and permeability, and the quality of the surrounding landscape matrix. Furthermore, the perception of spatial scale (e.g. environmental grain) and temporal effects (time lags, extinction debts) can differ markedly among species, network modules and trophic levels, highlighting the need to develop a more integrated perspective that considers not just nodes, but the structural role and strength of species interactions (e.g. as hubs, spatial couplers and determinants of connectance, nestedness and modularity) in response to habitat fragmentation.Many challenges remain for improving our understanding: the likely importance of specialisation, functional redundancy and trait matching has been largely overlooked. The potentially critical effects of apex consumers, abundant species and supergeneralists on network changes and evolutionary dynamics also need to be addressed in future research. Ultimately, spatial and ecological networks need to be combined to explore the effects of dispersal, colonisation, extinction and habitat fragmentation on network structure and coevolutionary dynamics. Finally, we need to embed network approaches more explicitly within applied ecology in general, because they offer great potential for improving on the current species-based or habitat-centric approaches to our management and conservation of biodiversity in the face of environmental change.
Resumo:
Includes bibliography
Resumo:
The Iguape and Cananéia Lagoon-Estuarine Complex is a biodiversity hotspot in southeastern Brazil. In recent decades, the region has become an important destination for recreational fishing. The objective of this study was to analyze the socioeconomic characteristics of visiting anglers and fishing guides working in the Cananéia-Iguape-Peruíbe Environmental Protected Area and their views on fisheries management. Data were collected through semi-structured interviews conducted between January 2009 and January 2010. We interviewed 278 anglers, who were predominantly male (93%) with a mean age of 47 years and from the state of São Paulo. The targeted species were snooks (Centropomus undecimales and Centropomus parallelus) and weakfishes (Cynoscion leiarchus and Cynoscion acoupa). Only half the anglers had the mandatory fishing license, and many of them lacked knowledge about catch quotas and minimum size requirements for specific species. The fishing guides (n = 80) were all male, with a mean age of 39 years and extensive experience. Most of the guides believe that the study area is somewhat degraded due to the removal of riparian vegetation, siltation, pollution, and especially the depletion of fish stocks. The opinions of the stakeholders (anglers and guides) converge on the high priority needs of the fishery and possible management actions regarding recreational fishing, such as improved fisheries enforcement (first in order of importance), proper training of fishing guides, zoning of fishing areas, and the definition of a maximum size limit. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lianas can change forest dynamics, slowing down forest regeneration after a perturbation. In these cases, it may be necessary to manage these woody climbers. Our aim was to simulate two management strategies: (1) focusing on abundant liana species and (2) focusing on the largest lianas, and contrast them with the random removal of lianas. We applied mathematical simulations for liana removal in three different vegetation types in southeastern Brazil: a Rainforest, a Seasonal Tropical Forest, and a Woodland Savanna. Using these samples, we performed simulations based on two liana removal procedures and compared them with random removal. We also used regression analysis with quasi-Poisson distribution to test whether larger lianas were aggressive, i.e., if they climbed into many trees. The procedure of cutting larger lianas was as effective as cutting them randomly and proved not to be a good method for liana management. Moreover, most of the lianas climbed into one or two trees, i.e., were not aggressive. Cutting the most abundant lianas proved to be a more effective method than cutting lianas randomly. This method could maintain liana richness and presumably should accelerate forest regeneration.
Resumo:
The spread of wildlife diseases is a major threat to livestock, human health, resource-based recreation, and biodiversity conservation (Cleaveland, Laurenson, and Taylor). The development of economically sound wildlife disease-management strategies requires an understanding of the links between ecological functions (e.g., disease transmission and wildlife dispersal) and economic choices, and the associated tradeoffs. Spatial linkages are particularly relevant. Yet while ecologists have long-argued that space is important (Hudson et al.), prior economic work has largely ignored spatial issues. For instance, Horan and Wolf analyzed a case study of bovine tuberculosis (bTB) in Michigan deer, a problem where the disease appears to be confined to a single, spatially confined, wildlife population—an island. But wildlife disease matters generally are not spatially confined. Barlow, in analyzing bTB in possums in New Zealand, accounted for immigration of susceptible possums into a disease reservoir. However, he modeled immigration as fixed and unaffected by management. Bicknell, Wilen, and Howitt, also focusing on possums in New Zealand, developed a model that incorporates simple density-dependent net migration. This allowed the authors to account for endogenous immigration when deriving optimal culling strategies.
Resumo:
Background Meadows are regularly mown in order to provide fodder or litter for livestock and to prevent vegetation succession. However, the time of year at which meadows should be first mown in order to maximize biological diversity remains controversial and may vary with respect to context and focal taxa. We carried out a systematic review and meta-analysis on the effects of delaying the first mowing date upon plants and invertebrates in European meadowlands. Methods Following a CEE protocol, ISI Web of Science, Science Direct, JSTOR, Google and Google Scholar were searched. We recorded all studies that compared the species richness of plants, or the species richness or abundance of invertebrates, between grassland plots mown at a postponed date (treatment) vs plots mown earlier (control). In order to be included in the meta-analysis, compared plots had to be similar in all management respects, except the date of the first cut that was (mostly experimentally) manipulated. They were also to be located in the same meadow type. Meta-analyses applying Hedges’d statistic were performed. Results Plant species richness responded differently to the date to which mowing was postponed. Delaying mowing from spring to summer had a positive effect, while delaying either from spring to fall, or from early summer to later in the season had a negative effect. Invertebrates were expected to show a strong response to delayed mowing due to their dependence on sward structure, but only species richness showed a clearly significant positive response. Invertebrate abundance was positively influenced in only a few studies. Conclusions The present meta-analysis shows that in general delaying the first mowing date in European meadowlands has either positive or neutral effects on plant and invertebrate biodiversity (except for plant species richness when delaying from spring to fall or from early summer to later). Overall, there was also strong between-study heterogeneity, pointing to other major confounding factors, the elucidation of which requires further field experiments with both larger sample sizes and a distinction between taxon-specific and meadow-type-specific responses.
Resumo:
Green-tree retention under the conceptual framework of ecological forestry has the potential to provide both biomass feedstock for industry and maintain quality wildlife habitat. I examined the effects of retained canopy trees as biological legacies (“legacy trees”) in aspen (Populus spp.) forests on above-ground live woody biomass, understory plant floristic quality, and bird diversity. Additionally, I evaluated habitat quality for a high conservation priority species, the Golden-winged Warbler (Vermivora chrysoptera). I selected 27 aspen-dominated forest stands in northern Wisconsin with nine stands in each of three legacy tree retention treatments (conifer retention, hardwood retention, and clearcuts or no retention) across a chronosequence (4-36 years post-harvest). Conifer retention stands had greater legacy tree and all tree species biomass but lower regenerating tree biomass than clearcuts. Coniferous but not hardwood legacy trees appeared to suppress regenerating tree biomass. I evaluated the floristic quality of the understory plant assemblage by estimating the mean coefficient of conservatism (C). Mean C was lower in young stands than in middle-age or old stands; there was a marginally significant (p=0.058) interaction effect between legacy tree retention treatment and stand age. Late-seral plant species were positively associated with stand age and legacy tree diameter or age revealing an important relationship between legacy tree retention and stand development. Bird species richness was greatest in stands with hardwood retention particularly early in stand development. Six conservation priority bird species were indicators of legacy tree retention or clearcuts. Retention of legacy trees in aspen stands provided higher quality nest habitat for the Golden-winged Warbler than clearcuts based on high pairing success and nesting activity. Retention of hardwoods, particularly northern red oak (Quercus rubra), yielded the most consistent positive effects in this study with the highest bird species richness and the highest quality habitat for the Golden-winged Warbler. This treatment maintained stand biomass comparable to clearcuts and did not suppress regenerating tree biomass. In conclusion, legacy tree retention can enhance even-aged management techniques to produce a win-win scenario for the conservation of declining bird species and late-seral understory plants and for production of woody biomass feedstock from naturally regenerating aspen forests.
Resumo:
Invasive plant species threaten natural areas by reducing biodiversity and altering ecosystem functions. They also impact agriculture by reducing crop and livestock productivity. Millions of dollars are spent on invasive species control each year, and traditionally, herbicides are used to manage invasive species. Herbicides have human and environmental health risks associated with them; therefore, it is essential that land managers and stakeholders attempt to reduce these risks by utilizing the principles of integrated weed management. Integrated weed management is a practice that incorporates a variety of measures and focuses on the ecology of the invasive plant to manage it. Roadways are high risk areas that have high incidence of invasive species. Roadways act as conduits for invasive species spread and are ideal harborages for population growth; therefore, roadways should be a primary target for invasive species control. There are four stages in the invasion process which an invasive species must overcome: transport, establishment, spread, and impact. The aim of this dissertation was to focus on these four stages and examine the mechanisms underlying the progression from one stage to the next, while also developing integrated weed management strategies. The target species were Phragmites australis, common reed, and Cisrium arvense, Canada thistle. The transport and establishment risks of P. australis can be reduced by removing rhizome fragments from soil when roadside maintenance is performed. The establishment and spread of C. arvense can be reduced by planting particular resistant species, e.g. Heterotheca villosa, especially those that can reduce light transmittance to the soil. Finally, the spread and impact of C. arvense can be mitigated on roadsides through the use of the herbicide aminopyralid. The risks associated with herbicide drift produced by application equipment can be reduced by using the Wet-Blade herbicide application system.
Resumo:
A subset of forest management techniques, termed ecological forestry, have been developed in order to produce timber and maintain the ecological integrity of forest communities through practices that more closely mirror natural disturbance regimes. Even though alternative methods have been described and tested, these approaches still need to be established and analyzed in a variety of geographic regions in order to calibrate and measure effectiveness across different forest types. The primary objective of this research project was to assess whether group selection combined with legacy-tree retention could enhance mid-tolerant tree recruitment in a late-successional northern hardwood forest. In order to evaluate a novel alternative regeneration technique, 49 group-selection openings in three size classes were created in 2003 with a biological legacy tree retained in the center of each opening. Twenty reference sites, managed using single-tree selection, were also analyzed for comparison. The specific goals of the project were to: 1) determine the fate and persistence of the openings and legacy trees 2) assess the understory response of the group-selection openings versus the single-tree selection reference sites, and 3) evaluate the spatial patterns of yellow birch (Betula alleghaniensis Britt.) and eastern hemlock (Tsuga canadensis (L.) Carr.) in the group-selection openings. The results from 8-9 years post-study implementation and the changes that have occurred between 2004/5 and 2011/12 are discussed. The alternative regeneration technique developed and assessed in this study has the potential to enrich biodiversity in a range of forest types. Projected group-selection opening persistence rates ranged from 41-91 years. Openings from 500-1500 m2 are predicted to persist long enough for mid-tolerant tree recruitment. The legacy trees responded well to release and experienced a low mortality rate. Yellow birch (the primary shade mid-tolerant tree in the study area) densities increased with opening size. Maples surpassed all other species in abundance. In the sapling layer, sugar maple (Acer saccharum Marsh.) was 2 to over 300 times more abundant in the group-selection openings and 2 to 3 times more abundant in the references sites than all other species present. Red maple (Acer rubrum L.) was the second most abundant species present in the openings and reference sites. Spatial patterns of yellow birch and eastern hemlock in the openings were mostly aggregated. The southern edges of the largest openings contained the highest magnitude of yellow birch and eastern hemlock per unit area. Continued monitoring and additional treatments will likely be necessary in order to ensure underrepresented species successfully reach maturity.