893 resultados para Biodiesel and Crambe


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to adapt the methodology of the accelerated aging and electrical conductivity tests for determination of physiological potential in crambe seeds. Six seed lots of crambe (cv. FMS Brilhante) were subjected to determination of moisture content, germination test, first count germination, emergence, and emergence speed index. For the accelerated aging test, the traditional methodology was used with water, and with a saturated potassium chloride and sodium chloride solution in three periods of exposure (24, 48, and 72 hours) at 41 degrees C; the electrical conductivity test was performed with four pre-soaking treatments (0, 2, 4, and 8 hours) and four soaking periods (4, 8, 16, and 24 hours) at 25 degrees C. The accelerated aging test with water for 72 hours and the electrical conductivity test with 2 hours of pre-soaking and assessment after 16 hours were effective for classification of the crambe seed lots in regard to physiological quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, we aimed to evaluate the effect of five drying systems on the quality of crambe seed and the influence of the pericarp in its electrical conductivity. The experimental design adopted was randomized blocks with four replications. The following drying methods were applied: drying in the field, on the patio, under shade, with heated air, and non-heated air. To evaluate the electrical conductivity and the fat acidity, the seeds, from the cultivar FMS Brilhante, were analyzed with and without pericarp. . An analysis of variance was performed and the means were compared by Tukey test (p≤0,05). We also performed the Pearson linear correlation between electrical conductivity and fat acidity in order to evaluate the pericarp influence. The 4 drying system using shades cause less damage to the seeds; and the presence of pericarp decreased the sensitivity of the electrical conductivity

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biodiesel is a reality in Brazil, due to the National Program of Biodiesel Production and Use (PNPB), which became mandatory in 2008 in adding 2% biodiesel in all diesel sold in a blend known as B2. The agribusiness sector responded to the federal program, facing many difficulties in biodiesel production, which highlights the supply of raw material. Problems related to biodiesel production were mainly the shortage of vegetable oil, because of demand from domestic and foreign markets, and rising prices of raw materials available for production, making this biofuel production economically feasible, even in Brazil, where agricultural production costs are among the most competitive in the world. The crambe is a specie that has aroused the interest of Brazilian producers due to oil content, hardiness, and mechanized cultivation, mainly for being a winter crop, it becomes one more option for farmers in this period. In addition, you can compose systems of crop rotation as well as being used as ground cover in winter. The aim of this study was to evaluate the potential for productive and cost of production of crambe, conducted in no-tillage system, to compare these parameters with other oil crops such as sunflower, canola and soybean. The trial was conducted in the agricultural year 2008 at the Experimental Farm Lageado belonging to the Faculty of Agronomic Sciences - UNESP, located in Botucatu - SP. The estimated yield was 1.507,05 kg ha-1, resulting in a production of 561,94 liters of oil per hectare. The cost of installation and conduct of crambe per hectare was R$ 875,87, resulting in a cost of R$ 1,56 per liter of oil, the lowest cost among the oilseed crops analyzed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crambe (Crambe abyssinica Hochst) seeds have high oil contents and its growth in Brazil aims to produce bio diesel. The crambe seeds production and commercialization began a few years ago. Research in technology production is essential and it is also important to use high quality seeds regardless of the technological level employed in the crop production. One of the factors that affect seed quality there is the drying process. Seed drying performed properly can reduce seed moisture content for storage without decrease in its qualitative characteristics. The aim of this study was to evaluate the immediate effect of natural and artificial drying methods (using heated and unheated air) on crambe seeds quality. The seeds were produced at Fazenda Lageado, Faculdade de Ciências Agronômicas, UNESP, Botucatu/SP, on April 2009. Seeds were submitted to the following drying methods: a) seed drying in the shade with natural ventilation; b) artificial drying method using heated air; c) artificial drying method using unheated air; d) drying on ceramic patio; e) drying on the mother plant. The seeds were evaluated immediately after drying. The following tests were performed: seed moisture content; standard germination; first count of germination; seedling emergence; emergence speed index and electrical conductivity. The experimental design was randomized blocks and the data obtained was subjected to analysis of variance, worth means being compared by Tukey test at 5% probability. There was no significant difference among drying treatments in relation to: germination rate, first count of germination, electrical conductivity, seedling emergence and emergence speed index. The highest percentage of abnormal seedlings was obtained on treatment with heated air drying. The drying on the mother plant method showed the lower percentage of dead seeds. The drying methods studied did not cause an immediate effect on crambe seeds quality, which showed high percentage of dormant seeds post-harvest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Triglycerides are reacted in a liquid phase reaction with methanol and a homogeneous basic catalyst. The reaction yields a spatially separated two phase result with an upper located non-polar phase consisting principally of non-polar methyl esters and a lower located phase consisting principally of glycerol and residual methyl esters. The glycerol phase is passed through a strong cationic ion exchanger to remove anions, resulting in a neutral product which is flashed to remove methanol and which is reacted with isobutylene in the presence of a strong acid catalyst to produce glycerol ethers. The glycerol ethers are then added back to the upper located methyl ethyl ester phase to provide an improved biodiesel fuel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 mu m in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Corrosion is a relevant issue regarding the problem of biodiesel compatibility with polymers and metals. This work aims to evaluate the influence of the natural light incidence and temperature in the corrosion rate of brass and copper immersed in commercial biodiesel as well as biodiesel degradation after the contact with metallic ions. The characterization of corrosion behavior was performed by weight loss measurements according to ASTM G1 and ASTM G31. The experiments according to ASTM G1 were performed at room temperature in light presence and absence. Experiments were also conducted at 55 degrees C in order to compare with ASTM G31 that is also performed at that temperature. The biodiesel degradation was characterized by water content, oxidation stability, viscosity as well as XRF, IR and Raman spectroscopies. The results of ASTM G1 tests showed that the thickness loss for both metals determined at room temperature is slightly higher when there is light incidence and these values significantly decrease for the highest temperature. The results of ASTM G31 tests indicated that air bubbling along with higher temperature affects mostly immersed samples. Biodiesel in contact with metals shows significant degradation in its properties as evidenced by increasing water content, higher viscosity and lower oxidation stability. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degrees C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and H-1 NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L-1 day(-1)) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L-1 day(-1) were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L-1 day(-1), highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L-1 day(-1), organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sugarcane (Saccharum spp.) and palm tree (Elaeis guianeensis) are crops with high biofuel yields, 7.6 m(3) ha (1) y(-)1 of ethanol and 4 Mg ha(-1) y(-1) of oil, respectively. The joint production of these crops enhances the sustainability of ethanol. The objective of this work was comparing a traditional sugarcane ethanol production system (TSES) with a joint production system (JSEB), in which ethanol and biodiesel are produced at the same biorefinery but only ethanol is traded. The comparison is based on ISO 14.040:2006 and ISO 14044:2006, and appropriate indicators. Production systems in Cerrado (typical savannah), Cerradao (woody savannah) and pastureland ecosystems were considered. Energy and carbon balances, and land use change impacts were evaluated. The joint system includes 100% substitution of biodiesel for diesel, which is all consumed in different cropping stages. Data were collected by direct field observation methods, and questionnaires applied to Brazilian facilities. Three sugarcane mills situated in Sao Paulo State and one palm oil refinery located in Para State were surveyed. The information was supplemented by secondary sources. Results demonstrated that fossil fuel use and greenhouse gas emissions decreased, whereas energy efficiency increased when JSEB was compared to TSES. In comparison with TSES, the energy balance of JSEB was 1.7 greater. In addition, JSEB released 23% fewer GHG emissions than TSES. The ecosystem carbon payback time for Cerrado, Cerradao, and Degraded Grassland of JSEB was respectively 4, 7.7 and -7.6 years. These are typical land use types of the Brazilian Cerrado region for which JSEB was conceived. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strontium zirconate oxide was synthesized by co-precipitation and the citrate route and was evaluated as a heterogeneous catalyst for biodiesel production. The catalyst samples were characterized by XRD, FTIR, and TG, and catalytic activity was measured based on the ester content of the biodiesel produced that was quantified by GC. The co-precipitate samples were obtained in alkaline pH and had a mixture of the perovskite and pure strontium and zirconium oxide phases. Ester conversion using these samples was approximately 1.6%, indicating no catalytic activity. The citrate route was more efficient in producing perovskite when carried out at pH 7-8; excess SrCO3 was found on the catalyst surface due to CO2 adsorption, thus demonstrating no catalytic activity. The same synthesis carried out at pH 2 resulted in free OH- groups, with a small amount of the carbonate species that produced ester yield values of 98%. Therefore, matrices based on strontium zirconate produced via the citrate route in acidic media are potential heterogeneous catalysts for transesterification. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the physical and chemical characteristics of methyl and ethyl esters (biodiesel) produced by transesterification of pequi oil (Caryocar brasiliensis Camb.) in the presence of potassium hydroxide. The oil extracted from pequi seed comprises 60% of the fruit content. Such characteristics as density, acidity, viscosity, and carbon residue of the biodiesel meet ANP (Brazilian National Petroleum Agency) standards. Our tests demonstrated the feasibility of utilizing pequi oil for biodiesel production.