967 resultados para Biodegradation of aromatic hydrocarbons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-density polyethylene was mixed with dextrin having different particle sizes (100, 200 and 300 mesh). Various compositions were prepared and their mechanical properties were evaluated and thermal studies have been carried out. Biodegradability of these samples has been checked using liquid culture medium containing Vibrios (an amylase producing bacteria), which were isolated from marine benthic environment. Soil burial test was done and reprocessability of these samples was evaluated. The results indicate that the newly prepared blends are reprocessable without sacrificing much of their mechanical properties. The biodegradability tests on these blends indicate that these are partially biodegradable

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mecoprop-p [(R)-2-(4-chloro-2-methylphenoxy) propanoic acid) is widely used in agriculture and poses an environmental concern because of its susceptibility to leach from soil to water. We investigated the effect of soil depth on mecoprop-p biodegradation and its relationship with the number and diversity of tfdA related genes, which are the most widely known genes involved in degradation of the phenoxyalkanoic acid group of herbicides by bacteria. Mecoprop-p half-life (DT50) was approximately 12 days in soil sampled from <30 cm depth, and increased progressively with soil depth, reaching over 84 days at 70–80 cm. In sub-soil there was a lag period of between 23 and 34 days prior to a phase of rapid degradation. No lag phase occurred in top-soil samples prior to the onset of degradation. The maximum degradation rate was the same in top-soil and sub-soil samples. Although diverse tfdAα and tfdA genes were present prior to mecoprop-p degradation, real time PCR revealed that degradation was associated with proliferation of tfdA genes. The number of tfdA genes and the most probable number of mecoprop-p degrading organisms in soil prior to mecoprop-p addition were below the limit of quantification and detection respectively. Melting curves from the real time PCR analysis showed that prior to mecoprop-p degradation both class I and class III tfdA genes were present in top- and sub-soil samples. However at all soil depths only tfdA class III genes proliferated during degradation. Denaturing gradient gel electrophoresis confirmed that class III tfdA genes were associated with mecoprop-p degradation. Degradation was not associated with the induction of novel tfdA genes in top- or sub-soil samples, and there were no apparent differences in tfdA gene diversity with soil depth prior to or following degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyethylene glycol (PEG) may be added to forage based diets rich in tannins for ruminant feeding because it binds to tannins and thus prevent the formation of potentially indigestible tannin-protein complexes. The objective of this work was to determine the in vitro biodegradation (mineralization, i.e., complete breakdown of PEG to CO2) rate of PEG. C-14-Polyethylene glycol (C-14-PEG) was added to three different tropical soils (a sandy clay loam soil, SaCL; a sandy clay soil, SaC; and a sandy loam soil, SaL) and was incubated in Bartha flasks. Free PEG and PEG bound to tannins from a tannin rich local shrub were incubated under aerobic conditions for up to 70 days. The biodegradation assay monitored the (CO2)-C-14 evolved after degradation of the labelled PEG in the soils. After incubation, the amount of (CO2)-C-14 evolved from the C-14-PEG application was low. Higher PEG mineralization values were found for the soils with higher organic matter contents (20.1 and 18.6 g organic matter/kg for SaCL and SaC, respectively) than for the SaL soil (11.9 g organic matter/kg) (P < 0.05). The extent of mineralization of PEG after 70 days of incubation in the soil was significantly lower (P < 0.05) when it was added as bound to the browse tannin than in the free form (0.040 and 0.079, respectively). (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel 'tweezer-type' complexes that exploit the interactions between pi-electron-rich pyrenyl groups and pi-electron deficient diimide units have been designed and synthesised. The component molecules leading to complex formation were accessed readily from commercially available starting materials through short and efficient syntheses. Analysis of the resulting complexes, using the visible charge-transfer band, revealed association constants that increased sequentially from 130 to 11,000 M-1 as increasing numbers of pi-pi-stacking interactions were introduced into the systems. Computational modelling was used to analyse the structures of these complexes, revealing low-energy chain-folded conformations for both components, which readily allow close, multiple pi-pi-stacking and hydrogen bonding to be achieved. In this paper, we give details of our initial studies of these complexes and outline how their behaviour could provide a basis for designing self-healing polymer blends for use in adaptive coating systems. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two types of poly(epsilon-caprolactone (CLo)-co-poly(epsilon-caprolactam (CLa)) copolymers were prepared by catalyzed hydrolytic ring-opening polymerization. Both cyclic comonomers were added simultaneously in the reaction medium for the First type or materials where copolymers have a random distribution of counits, as evidenced by H-1 and C-13 NMR. For the second type of copolymers, the cyclic comonomers were added sequentially, yielding diblock poly(ester-amides). The materials were characterized by differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS), and transmission and scanning electron microscopies (TEM and SEM). Their biodegradation in compost was also studied. All copolymers were found to be miscible by the absence of structure in the melt. TEM revealed that all samples exhibited a crystalline lamellar morphology. DSC and WAXS showed that in a wide composition range (CLo contents from 6 to 55%) only the CLa units were capable of crystallization in the random copolymers. The block copolymer samples only experience a small reduction of crystallization and melting temperature with composition, and this was attributed to a dilution effect caused by the miscible noncrystalline CLo units. The comparison between block and random copolymers provided a unique opportunity to distinguish the dilution effect of the CLo units on the crystallization and melting of the polyamide phase from the chemical composition effect in the random copolymers case, where the CLa sequences are interrupted statistically by the CLo units, making the crystallization of the polyamide strongly composition dependent. Finally, the enzymatic degradation of the copolymers in composted soil indicate a synergistic behavior where much faster degradation was obtained for random copolymers witha CLo content larger than 30% than for neat PCL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flight necessitates that the feather rachis is extremely tough and light. Yet, the crucial filamentous hierarchy of the rachis is unknown—study hindered by the tight chemical bonding between the filaments and matrix. We used novel microbial biodegradation to delineate the fibres of the rachidial cortex in situ. It revealed the thickest keratin filaments known to date (factor >10), approximately 6 µm thick, extending predominantly axially but with a small outer circumferential component. Near-periodic thickened nodes of the fibres are staggered with those in adjacent fibres in two- and three-dimensional planes, creating a fibre–matrix texture with high attributes for crack stopping and resistance to transverse cutting. Close association of the fibre layer with the underlying ‘spongy’ medulloid pith indicates the potential for higher buckling loads and greater elastic recoil. Strikingly, the fibres are similar in dimensions and form to the free filaments of the feather vane and plumulaceous and embryonic down, the syncitial barbules, but, identified for the first time in 140+ years of study in a new location—as a major structural component of the rachis. Early in feather evolution, syncitial barbules were consolidated in a robust central rachis, definitively characterizing the avian lineage of keratin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe a novel combination of Raman spectroscopy, isotope editing and X-ray scattering as a powerful approach to give detailed structural information on aromatic side chains in peptide fibrils. The orientation of the tyrosine residues in fibrils of the peptide YTIAALLSPYS with respect to the fibril axis has been determined from a combination of polarised Raman spectroscopy and X-ray diffraction measurements. The Raman intensity of selected tyrosine bands collected at different polarisation geometries is related to the values and orientation of the Raman tensor for those specific vibrations. Using published Raman tensor values we solved the relevant expressions for both of the two tyrosine residues present in this peptide. Ring deuteration in one of the two tyrosine side chains allowed for the calculation to be performed individually for both, by virtue of the isotopic shift that eliminates band overlapping. Sample disorder was taken into account by obtaining the distribution of orientations of the samples from X-ray diffraction experiments. The results provide previously unavailable details about the molecular conformation of this peptide, and demonstrate the value of this approach for the study of amyloid fibrils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of varying the alkali metal cation in the high-temperature nucleophilic synthesis of a semi-crystalline, aromatic poly(ether ketone) have been systematically investigated, and striking variations in the sequence-distributions and thermal characteristics of the resulting polymers were found. Polycondensation of 4,4'-dihydroxybenzophenone with 1,3-bis(4-fluorobenzoyl)benzene in diphenylsulfone as solvent, in the presence of an alkali metal carbonate M2CO3 (M= Li, Na, K, or Rb) as base, affords a range of different polymers that vary in the distribution pattern of 2-ring and 3-ring monomer units along the chain. Lithium carbonate gives an essentially alternating and highly crystalline polymer, but the degree of sequence-randomisation increases progressively as the alkali metal series is descended, with rubidium carbonate giving a fully random and non-thermally-crystallisable polymer. Randomisation during polycondensation is shown to result from reversible cleavage of the ether linkages in the polymer by fluoride ions, and an isolated sample of alternating-sequence polymer is thus converted to a fully randomised material on heating with rubidium fluoride.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general consistency in the sequential order of petroleum hydrocarbon reduction in previous biodegradation studies has led to the proposal of several molecularly based biodegradation scales. Few studies have investigated the biodegradation susceptibility of petroleum hydrocarbon products in soil media, however, and metabolic preferences can change with habitat type. A laboratory based study comprising gas chromatography–mass spectrometry (GC–MS) analysis of extracts of oil-treated soil samples incubated for up to 161 days was conducted to investigate the biodegradation of crude oil exposed to sandy soils of Barrow Island, home to both a Class ‘‘A” nature reserve and Australia’s largest on-shore oil field. Biodegradation trends of the hydrocarbon-treated soils were largely consistent with previous reports but some unusual behaviour was recognised both between and within hydrocarbon classes. For example, the n-alkanes persisted at trace levels from day 86 to 161 following the removal of typically more stable dimethyl naphthalenes and methyl phenanthrenes. The relative susceptibility to biodegradation of different di- tri- and tetramethylnaphthalene isomers also showed several features distinct from previous reports. The unique biodegradation behaviour of Barrow Is. soil likely reflects difference in microbial functioning with physiochemical variation in the environment. Correlation of molecular parameters, reduction rates of selected alkyl naphthalene isomers and CO2 respiration values with a delayed (61 d) oil-treated soil identified a slowing of biodegradation with microcosm incubation; a reduced function or population of incubated soil flora might also influence the biodegradation patterns observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of H-1 and C-13 Nuclear Magnetic Resonance (NMR) for the nano-composite materials formed by the intercalation of hexadecylamine (HDA) in metal oxides (TiO2, V2O5 and MoO3), are reported. The H-1 NMR spin-lattice relaxation in the rotating frame was described by using the spectral density due to Davidson and Cole, which incorporates a distribution of correlation times characterized by a width parameter epsilon. The fitting of the data was obtained for epsilon = 0.74, indicating that the correlation times are distributed over a narrow range in this system. High-resolution C-13 NMR techniques were used to resolve the NMR lines of middle-chain methylene groups in the spectra and variable contact time cross-polarization {H-1-}C-13 experiments were employed to analyze the reorientation dynamics of the CH3 and CH2 groups in the HDA chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The improvement of the enzymatic performance of Aspergillus terreus and Rhizopus oryzae in enantioselective bioreductions by using glycerol as a co-solvent has been studied. In the most of the bioreductions, glycerol has demonstrated its potential for improved conversions (up to >99%) and enantioselectivities (up to >99%) when compared to reactions in aqueous or other aqueous-organic media (THF, diethyl ether, toluene, DMSO and acetonitrile). Moreover, high isolated yields of the desired chiral alcohols have been obtained on a preparative scale showing the great potential of this green solvent in biocatalysis. (C) 2009 Elsevier Ltd. All rights reserved.