926 resultados para Biodegradable Polymers
Resumo:
Dissertação Para Obtenção Do Grau De Mestre Em Bioorgânica
Resumo:
Using a green methodology, 17 different poly(2-oxazolines) were synthesized starting from four different oxazoline monomers. The polymerization reactions were conducted in supercritical carbon dioxide under a cationic ring-opening polymerization (CROP) mechanism using boron trifluoride diethyl etherate as the catalyst. The obtained living polymers were then end-capped with different types of amines, in order to confer them antimicrobial activity. For comparison, four polyoxazolines were end-capped with water, and by their hydrolysis the linear poly(ethyleneimine) (LPEI) was also produced. After functionalization the obtained polymers were isolated, purified and characterized by standard techniques (FT-IR, NMR, MALDI-TOF and GPC). The synthesized poly(2-oxazolines) revealed an unusual intrinsic blue photoluminescence. High concentration of carbonyl groups in the polymer backbone is appointed as a key structural factor for the presence of fluorescence and enlarges polyoxazolines’ potential applications. Microbiological assays were also performed in order to evaluate their antimicrobial profile against gram-positive Staphylococcus aureus NCTC8325-4 and gram-negative Escherichia coli AB1157 strains, two well known and difficult to control pathogens. The minimum inhibitory concentrations (MIC)s and killing rates of three synthesized polymers against both strains were determined. The end-capping with N,N-dimethyldodecylamine of living poly(2- methyl-2-oxazoline) and poly(bisoxazoline) led to materials with higher MIC values but fast killing rates (less than 5 minutes to achieve 100% killing for both bacterial species) than LPEI, a polymer which had a lower MIC value, but took a longer time to kill both E.coli and S.aureus cells. LPEI achieved 100% killing after 45 minutes in contact with E. coli and after 4 hours in contact with S.aureus. Such huge differences in the biocidal behavior of the different polymers can possibly underlie different mechanisms of action. In the future, studies to elucidate the obtained data will be performed to better understand the killing mechanisms of the polymers through the use of microbial cell biology techniques.
Resumo:
Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.
Resumo:
Bioactive glass nanoparticles (BGNPs) promote an apatite surface layer in physiologic conditions that lead to a good interfacial bonding with bone.1 A strategy to induce bioactivity in non-bioactive polymeric biomaterials is to incorporate BGNPs in the polymer matrix. This combination creates a nanocomposite material with increased osteoconductive properties. Chitosan (CHT) is a polymer obtained by deacetylation of chitin and is biodegradable, non-toxic and biocompatible. The combination of CHT and the BGNPs aims at designing biocompatible spheres promoting the formation of a calcium phosphate layer at the nanocomposite surface, thus enhancing the osteoconductivity behaviour of the biomaterial. Shape memory polymers (SMP) are stimuli-responsive materials that offer mechanical and geometrical action triggered by an external stimulus.2 They can be deformed and fixed into a temporary shape which remains stable unless exposed to a proper stimulus that triggers recovery of their original shape. This advanced functionality makes such SMPs suitable to be implanted using minimally invasive surgery procedures. Regarding that, the inclusion of therapeutic molecules becomes attractive. We propose the synthesis of shape memory bioactive nanocomposite spheres with drug release capability.3 1. L. L. Hench, Am. Ceram. Soc. Bull., 1993, 72, 93-98. 2. A. Lendlein and S. Kelch, Angew Chem Int Edit, 2002, 41, 2034-2057. 3. Ã . J. Leite, S. G. Caridade and J. F. Mano, Journal of Non-Crystalline Solids (in Press)
Resumo:
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)
Resumo:
This study assesses rutting on two types of modified asphalt mixtures containing: (i) amorphous polyolefin polymer and (ii) a particular polymer obtained by combining LDPE (low density polyethylene) and EVA (ethyl-vinyl-acetate). Rutting tests were performed by a wheel tracking device. Stiffness and fatigue tests were carried out to confirm the performance of the asphalt mixtures. The testing showed that polymer modification in this study improved rut resistance without compromising the stiffness and fatigue behavior. The rutting results were fit in the NCHRP 1-37A model and the in situ rutting performance of asphalt mixtures can be predicted.
Resumo:
One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.
Resumo:
Among the various possible embodiements of Advanced Therapies and in particular of Tissue Engineering the use of temporary scaffolds to regenerate tissue defects is one of the key issues. The scaffolds should be specifically designed to create environments that promote tissue development and not merely to support the maintenance of communities of cells. To achieve that goal, highly functional scaffolds may combine specific morphologies and surface chemistry with the local release of bioactive agents. Many biomaterials have been proposed to produce scaffolds aiming the regeneration of a wealth of human tissues. We have a particular interest in developing systems based in nanofibrous biodegradable polymers1,2. Those demanding applications require a combination of mechanical properties, processability, cell-friendly surfaces and tunable biodegradability that need to be tailored for the specific application envisioned. Those biomaterials are usually processed by different routes into devices with wide range of morphologies such as biodegradable fibers and meshes, films or particles and adaptable to different biomedical applications. In our approach, we combine the temporary scaffolds populated with therapeutically relevant communities of cells to generate a hybrid implant. For that we have explored different sources of adult and also embryonic stem cells. We are exploring the use of adult MSCs3, namely obtained from the bone marrow for the development autologous-based therapies. We also develop strategies based in extra-embryonic tissues, such as amniotic fluid (AF) and the perivascular region of the umbilical cord4 (Whartonâ s Jelly, WJ). Those tissues offer many advantages over both embryonic and other adult stem cell sourcess. These tissues are frequently discarded at parturition and its extracorporeal nature facilitates tissue donation by the patients. The comparatively large volume of tissue and ease of physical manipulation facilitates the isolation of larger numbers of stem cells. The fetal stem cells appear to have more pronounced immunomodulatory properties than adult MSCs. This allogeneic escape mechanism may be of therapeutic value, because the transplantation of readily available allogeneic human MSCs would be preferable as opposed to the required expansion stage (involving both time and logistic effort) of autologous cells. Topics to be covered: This talk will review our latest developments of nanostructured-based biomaterials and scaffolds in combination with stem cells for bone and cartilage tissue engineering.
Resumo:
Tese de Doutoramento em Engenharia de Materiais.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)
Resumo:
INTRODUCTION & OBJECTIVES: Urothelial tumors of upper urinary tract are ranked among the most common types of cancers worldwide. The current standard therapy to prevent recurrence is intravesical Bacillus Calmetteâ Guerin (BCG) immunotherapy, but it presents several disadvantages such as BCG failure and intolerance. Another way is to use chemotherapy, which is generally better tolerated that BCG. In this case, drugs such as epirubicin, doxorubicin, paclitaxel and gemcitabine are used. Nevertheless, intravesical chemotherapy only prevents recurrence in the short-term. These failings can be partially attributed to the short residence time and low bioavailability of the drug within the upper urinary tract and the cancer cells, resulting in a need for frequent drug instillation. To avoid these problems, biodegradable ureteral stents impregnated by supercritical fluid CO2 (SCF) with each of the four anti-cancer drugs were produced. MATERIAL & METHODS: Four formulations with different concentrations of gelatin and alginate and crosslink agent were tested and bismuth was added to confer radiopaque properties to the stent. The preliminary in vivo validation studies in female domestic pigs was conducted at the University of Minho, Braga, after formal approval by the institutionâ s review board and in accordance with its internal ethical protocol for animal experiments. Paclitaxel, epirubicin, doxorubicin and gemcitabine were impregnated in the stents and the release kinetics was measured in artificial urine solution (AUS) for 9 days by UV spectroscopy in a microplate reader. The anti-tumoral effect of the developed stents in transitional cell carcinoma (TCC) and HUVEC primary cells, used as control, was evaluated. RESULTS: The in vivo validation of this second-generation of ureteral stents performed was herein demonstrated. Biodegradable ureteral stents were placed in the ureters of a female pigs, following the normal surgical procedure. The animals remained asymptomatic, with normal urine flow. The in vitro release study in AUS of the stent impregnated showed a higher release in the first 72h for the four anti-cancer drugs impregnated after this time the plateau was achieved and the stent degraded after 9 days. The direct and indirect contact of the anti-cancer biodegradable stents with the TCC and HUVEC cell lines confirm the anti-tumor effect of the stents impregnated with the four anti-cancer drugs, reducing around 75% of the viability of the TCC cell line after 72h and no killing effect in the HUVEC cells. CONCLUSIONS: The use of biodegradable ureteral stent in urology clinical practice not only reduce the stent-related symptoms but also open new treatment therapyâ s, like in urothelial tumors of upper urinary tract. Furthermore, we have demonstrated the clinical validation in vivo pig model. This study has thus shown the killing efficacy of the anti-cancer drug eluting biodegradable stents in vitro for the TCC cell line, with no toxicity observed in the control, non-cancerous cells.The direct and indirect contact of the anti-cancer biodegradable stents with the TCC and HUVEC cell lines confirm the anti-tumor effect of the stents impregnated with the four anti-cancer drugs, reducing around 75% of the viability of the TCC cell line after 72h and no killing effect in the HUVEC cells. This study has thus shown the killing efficacy of the anti-cancer drug eluting biodegradable stents in vitro for the TCC cell line, with no toxicity observed in the control, non-cancerous cells.
Resumo:
Los requerimientos de métodos analíticos que permitan realizar determinaciones más eficientes en diversas ramas de la Química, así como el gran desarrollo logrado por la Nanobiotecnología, impulsaron la investigación de nuevas alternativas de análisis. Hoy, el campo de los Biosensores concita gran atención en el primer mundo, sin embargo, en nuestro país es todavía un área de vacancia, como lo es también la de la Nanotecnología. El objetivo de este proyecto es diseñar y caracterizar nuevos electrodos especialmente basados en el uso de nanoestructuras y estudiar aspectos básicos de la inmovilización de enzimas, ADN, aptámeros, polisacáridos y otros polímeros sobre dichos electrodos a fin de crear nuevas plataformas de biorreconocimiento para la construcción de (bio)sensores electroquímicos dirigidos a la cuantificación de analitos de interés clínico, farmaco-toxicológico y ambiental.Se estudiarán las propiedades de electrodos de C vítreo, Au, "screen printed" y compósitos de C modificados con nanotubos de C (CNT) y/o nanopartículas (NP) de oro y/o nanoalambres empleando diversas estrategias. Se investigarán nuevas alternativas de inmovilización de las biomoléculas antes mencionadas sobre dichos electrodos, se caracterizarán las plataformas resultantes y se evaluarán sus posibles aplicaciones analíticas al desarrollo de biosensores con enzimas y ADNs como elementos de biorreconocimiento. Se funcionalizarán CNT con polímeros comerciales y sintetizados en nuestro laboratorio modificados con moléculas bioactivas. Se diseñarán y caracterizarán nuevas arquitecturas supramoleculares basadas en el autoensamblado de policationes, enzimas y ADNs sobre Au. Se evaluarán las propiedades catalíticas de NP de magnetita y de perovskitas de Mn y su aplicación al desarrollo de biosensores enzimáticos. Se diseñarán biosensores que permitan la detección altamente sensible y selectiva de secuencias específicas de ADNs de interés clínico. Se estudiará la interacción de genotóxicos con ADN (en solución e inmovilizado) y se desarrollarán biosensores que permitan su cuantificación. Se construirán biosensores enzimáticos para la cuantificación de bioanalitos, especialmente glucosa, fenoles y catecoles, y sensores electroquímicos para la determinación de neurotransmisores, ácido úrico y ácido ascórbico. Se diseñarán nuevos aptasensores electroquímicos para la cuantificación de biomarcadores, comenzando por lisozima y trombina y continuando con otros de interés regional/nacional.Se emplearán las siguientes técnicas: voltamperometrías cíclica (CV), de pulso diferencial (DPV) y de onda cuadrada (SWV); "stripping" potenciométrico a corriente constante (PSA); elipsometría; microbalanza de cristal de cuarzo con cálculo de pérdida de energía por disipación (QCM-D); resonancia de plasmón superficial con detección dual (E-SPR); espectroscopía de impedancia electroquímica (EIE); microscopías de barrido electroquímico (SECM), de barrido electrónico (SEM), de transmisión (TEM) y de fuerzas atómicas (AFM); espectrofotometría UV-visible; espectroscopías IR, Raman, de masas, RMN.Se espera que la inclusión de los CNT y/o de las NP metálicas y/o de los nanoalambres en los diferentes electrodos permita una mejor transferencia de carga de diversos analitos y por ende una detección más sensible y selectiva de bioanalitos empleando enzimas, ADN y aptámeros como elementos de biorreconocimiento. Se espera una mayor eficiencia en los aptasensores respecto de los inmunosensores, lo que permitirá la determinacion selectiva de diversos biomarcadores. La modificación de electrodos con nanoestructuras posibilitará la detección altamente sensible y selectiva del evento de hibridación. La respuesta obtenida luego de la interacción de genotóxicos con ADN permitirá un mejor conocimiento de la asociación establecida, de la cinética y de las constantes termodinámicas. Los neurotransmisores podrán ser determinados a niveles nanomolares aún en muestras complejas.
Resumo:
Las poliolefinas (polietileno y polipropileno) y el poliestireno se obtienen por polimerización de monómeros derivados del petróleo. La utilización creciente del petróleo incrementa la emisión a la atmósfera de gases que provocan el recalentamiento global. Por otra parte, la escasez de reservas de petróleo provocó en los últimos años un incremento en el precio del crudo y en el de sus derivados. Por tal motivo, esto pone de manifiesto el interés actual por reemplazar al petróleo y al gas natural por materias primas renovables. El ácido poliláctico (APL) y el poli(3-hidroxibutirato) (PHB) son poliésteres de origen bacteriano que poseen propiedades termoplásticas y elastómeras similares a los plásticos derivados del petróleo, pero son biodegradables y se producen a partir de sustratos renovables. Sin embargo, su costo es aún demasiado elevado. Una de las estrategias utilizadas para abaratarlos es la utilización de sustratos de costo bajo o nulo (residuos agroindustriales y permeado de lactosuero). Por lo tanto, el principal objetivo de este proyecto es sintetizar plásticos biodegradables alternativos a los polímeros sintéticos ya existentes a partir de recursos renovables de bajo costo. En particular, se pretende utilizar permeado de lactosuero proveniente de distintas industrias de San Francisco y su zona. San Francisco se encuentra estratégicamente ubicada dentro de una de las principales cuencas lecheras de este país. Los trabajos a desarrollar serán teórico y experimentales, y se relacionan con la síntesis y caracterización de los productos y el modelado de dichos procesos. Desde el punto de vista experimental se pretende: a) sintetizar el bio-monómero (ácico láctico) y los polímeros (APL y PHB) ; b) caracterizar el bio-monómero y los polímeros mediante el empleo de técnicas volumétricas, espectroscópicas y cromatográficas; y c) medir propiedades finales (fundamentalmente mecánicas) y establecer las relaciones estructuras-propiedades. Desde el punto de vista teórico se modelarán los procesos de síntesis (bio-monómero) y polimerización. Los modelos se utilizarán para la predicción de características físicas y moleculares de los productos finales, para la simulación y la optimización de procesos, y para complementar técnicas de caracterización. Este proyecto se enmarca dentro de la Química Verde o Sustentable con lo cual se pretende incentivar el desarrollo de productos más saludables y químicamente adaptados al medio ambiente que reemplacen a los polímeros sintéticos existentes sin la pérdida de sus propiedades finales. De este modo, se espera que los resultados contribuyan al conocimiento científico y tecnológico y resulten de interés regional e internacional.