934 resultados para Binary Image Representation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new sparse shape modeling framework on the Laplace-Beltrami (LB) eigenfunctions. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes by forming a Fourier series expansion. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we propose to filter out only the significant eigenfunctions by imposing l1-penalty. The new sparse framework can further avoid additional surface-based smoothing often used in the field. The proposed approach is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shapes in the normal population. In addition, we show how the emotional response is related to the anatomy of the subcortical structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Threat detection is a challenging problem, because threats appear in many variations and differences to normal behaviour can be very subtle. In this paper, we consider threats on a parking lot, where theft of a truck’s cargo occurs. The threats range from explicit, e.g. a person attacking the truck driver, to implicit, e.g. somebody loitering and then fiddling with the exterior of the truck in order to open it. Our goal is a system that is able to recognize a threat instantaneously as they develop. Typical observables of the threats are a person’s activity, presence in a particular zone and the trajectory. The novelty of this paper is an encoding of these threat observables in a semantic, intermediate-level representation, based on low-level visual features that have no intrinsic semantic meaning themselves. The aim of this representation was to bridge the semantic gap between the low-level tracks and motion and the higher-level notion of threats. In our experiments, we demonstrate that our semantic representation is more descriptive for threat detection than directly using low-level features. We find that a person’s activities are the most important elements of this semantic representation, followed by the person’s trajectory. The proposed threat detection system is very accurate: 96.6 % of the tracks are correctly interpreted, when considering the temporal context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from a training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multilevel design approach to deal with the issue of designing large neighborhood-based operators. The main idea is inspired by stacked generalization (a multilevel classifier design approach) and consists of, at each training level, combining the outcomes of the previous level operators. The final operator is a multilevel operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperform the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multilevel approach to obtain better results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explicitly construct a stationary coupling attaining Ornstein`s (d) over bar -distance between ordered pairs of binary chains of infinite order. Our main tool is a representation of the transition probabilities of the coupled bivariate chain of infinite order as a countable mixture of Markov transition probabilities of increasing order. Under suitable conditions on the loss of memory of the chains, this representation implies that the coupled chain can be represented as a concatenation of i.i.d. sequences of bivariate finite random strings of symbols. The perfect simulation algorithm is based on the fact that we can identify the first regeneration point to the left of the origin almost surely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an efficient pattern extraction algorithm that can be applied on melodic sequences that are represented as strings of abstract intervallic symbols; the melodic representation introduces special “binary don’t care” symbols for intervals that may belong to two partially overlapping intervallic categories. As a special case the well established “step–leap” representation is examined. In the step–leap representation, each melodic diatonic interval is classified as a step (±s), a leap (±l) or a unison (u). Binary don’t care symbols are used to represent the possible overlapping between the various abstract categories e.g. *=s, *=l and #=-s, #=-l. We propose an O(n+d(n-d)+z)-time algorithm for computing all maximal-pairs in a given sequence x=x[1..n], where x contains d occurrences of binary don’t cares and z is the number of reported maximal-pairs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an efficient pattern extraction algorithm that can be applied on melodic sequences that are represented as strings of abstract intervallic symbols; the melodic representation introduces special “binary don’t care” symbols for intervals that may belong to two partially overlapping intervallic categories. As a special case the well established “step–leap” representation is examined. In the step–leap representation, each melodic diatonic interval is classified as a step (±s), a leap (±l) or a unison (u). Binary don’t care symbols are used to represent the possible overlapping between the various abstract categories e.g. *=s, *=l and #=-s, #=-l. We propose an O(n+d(n-d)+z)-time algorithm for computing all maximal-pairs in a given sequence x=x[1..n], where x contains d occurrences of binary don’t cares and z is the number of reported maximal-pairs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article seeks to reflect on geographic representation in the coats of arms of countries in Latin America, showing how the physical, aspects of the landscape, the elements of the economy and the republican symbols were used by local elites to compose an imaginary nation in the nineteenth century. This process of "naturalization of territory" was used as an important feature in the national discourse, because this time, in most cases, the Latin American nations were composed of multi-ethnic states, with strong differences of class and a large illiterate population plus a very tenuous territory from the point of view of national integration. Thus, the elements related to geographic image through the use of coats of arms, conveyed strong messages to citizens, showing how these heraldic symbols can become an important source of research to unravel the process of building the imaginary nation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be in-viable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the bats behaviour, which has never been applied to this context so far. The wrapper approach combines the power of exploration of the bats together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in five public datasets have demonstrated that the proposed approach can outperform some well-known swarm-based techniques. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection aims to find the most important information to save computational efforts and data storage. We formulated this task as a combinatorial optimization problem since the exponential growth of possible solutions makes an exhaustive search infeasible. In this work, we propose a new nature-inspired feature selection technique based on bats behavior, namely, binary bat algorithm The wrapper approach combines the power of exploration of the bats together with the speed of the optimum-path forest classifier to find a better data representation. Experiments in public datasets have shown that the proposed technique can indeed improve the effectiveness of the optimum-path forest and outperform some well-known swarm-based techniques. © 2013 Copyright © 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques. © 2013 Springer-Verlag.