980 resultados para Bi-material crack
Resumo:
Short-term traffic flow data is characterized by rapid and dramatic fluctuations. It reflects the nature of the frequent congestion in the lane, which shows a strong nonlinear feature. Traffic state estimation based on the data gained by electronic sensors is critical for much intelligent traffic management and the traffic control. In this paper, a solution to freeway traffic estimation in Beijing is proposed using a particle filter, based on macroscopic traffic flow model, which estimates both traffic density and speed.Particle filter is a nonlinear prediction method, which has obvious advantages for traffic flows prediction. However, with the increase of sampling period, the volatility of the traffic state curve will be much dramatic. Therefore, the prediction accuracy will be affected and difficulty of forecasting is raised. In this paper, particle filter model is applied to estimate the short-term traffic flow. Numerical study is conducted based on the Beijing freeway data with the sampling period of 2 min. The relatively high accuracy of the results indicates the superiority of the proposed model.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.
Resumo:
Life Cycle Cost Analysis provides a form of synopsis of the initial and consequential costs of building related decisions. These cost figures may be implemented to justify higher investments, for example, in the quality or flexibility of building solutions through a long term cost reduction. The emerging discipline of asset mnagement is a promising approach to this problem, because it can do things that techniques such as balanced scorecards and total quantity cannot. Decisions must be made about operating and maintaining infrastructure assets. An injudicious sensitivity of life cycle costing is that the longer something lasts, the less it costs over time. A life cycle cost analysis will be used as an economic evaluation tool and collaborate with various numbers of analyses. LCCA quantifies incurring costs commonly overlooked (by property and asset managers and designs) as replacement and maintenance costs. The purpose of this research is to examine the Life Cycle Cost Analysis on building floor materials. By implementing the life cycle cost analysis, the true cost of each material will be computed projecting 60 years as the building service life and 5.4% as the inflation rate percentage to classify and appreciate the different among the materials. The analysis results showed the high impact in selecting the floor materials according to the potential of service life cycle cost next.
Resumo:
In this paper, an enriched radial point interpolation method (e-RPIM) is developed the for the determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched RBF meshfree shape functions is firstly investigated to fit different surfaces. The surface fitting results have proven that, comparing with the conventional RBF shape function, the enriched RBF shape function has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a trigonometric surface; and (3) a similar interpolation stability without increase of the condition number of the RBF interpolation matrix. Therefore, it has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF shape function, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF meshfree shape function and the meshfree weak-form. Several problems of linear fracture mechanics are simulated using this newlydeveloped e-RPIM method. It has demonstrated that the present e-RPIM is very accurate and stable, and it has a good potential to develop a practical simulation tool for fracture mechanics problems.
Resumo:
This paper reports two studies designed to investigate the effect on learning outcomes of matching individuals' preferred cognitive styles to computer-based instructional (CBI) material. Study 1 considered the styles individually as Verbalizer, Imager, Wholist and Analytic. Study 2 considered the bi-dimensional nature of cognitive styles in order to assess the full ramification of cognitive styles on learning: Analytic/Imager, Analytic/ Verbalizer, Wholist/Imager and the Wholist/Verbalizer. The mix of images and text, the nature of the text material, use of advance organizers and proximity of information to facilitate meaningful connections between various pieces of information were some of the considerations in the design of the CBI material. In a quasi-experimental format, students' cognitive styles were analysed by Cognitive Style Analysis (CSA) software. On the basis of the CSA result, the system defaulted students to either matched or mismatched CBI material by alternating between the two formats. The instructional material had a learning and a test phase. Learning outcome was tested on recall, labelling, explanation and problem-solving tasks. Comparison of the matched and mismatched instruction did not indicate significant difference between the groups, but the consistently better performance by the matched group suggests potential for further investigations where the limitations cited in this paper are eliminated. The result did indicate a significant difference between the four cognitive styles with the Wholist/Verbalizer group performing better then all other cognitive styles. Analysing the difference between cognitive styles on individual test tasks indicated significant difference on recall, labelling and explanation, suggesting that certain test tasks may suit certain cognitive styles.
Resumo:
In this paper, an enriched radial point interpolation method (e-RPIM) is developed the for the determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched RBF meshfree shape functions is firstly investigated to fit different surfaces. The surface fitting results have proven that, comparing with the conventional RBF shape function, the enriched RBF shape function has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a trigonometric surface; and (3) a similar interpolation stability without increase of the condition number of the RBF interpolation matrix. Therefore, it has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF shape function, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF meshfree shape function and the meshfree weak-form. Several problems of linear fracture mechanics are simulated using this newlydeveloped e-RPIM method. It has demonstrated that the present e-RPIM is very accurate and stable, and it has a good potential to develop a practical simulation tool for fracture mechanics problems.
Resumo:
This paper studies interfacial debonding behavior of composite beams which include piezoelectric materials, adhesive and host beam. The focus is put on crack initiation and growth of the piezoelectric adhesive interface. Closed-form solutions of interface stresses and energy release rates are obtained for adhesive layer in the piezoelectric composite beams. Finite element analyses have been carried out to study the initiation and growth of interfaces crack for piezoelectric beams with interface element by ANSYS, in which the interface element of FE model is based on the cohesive zone models to characterize the fracture behavior of the interfacial debonding. The results have been compared with analystical solution, and the influence of different geometry and material parameters on the interfacial behavior of piezoelectric composite beams have been discussed.
Resumo:
This paper reviews research findings regarding the design of instructional material and its effectiveness in facilitating learning. Firstly, a discussion of memory processes engaged in when learning from different types of instructional material is presented. Secondly, referring to empirical research, the implications of the above discussion for vocational education instruction, and in particular, for engineering graphics, CNC programming and learning to use equipment from manuals are presented.
Resumo:
Food microstructure represents the way their elements arrangement and their interaction. Researchers in this field benefit from identifying new methods of examination of the microstructure and analysing the images. Experiments were undertaken to study micro-structural changes of food material during drying. Micro-structural images were obtained for potato samples of cubical shape at different moisture contents during drying using scanning electron microscopy. Physical parameters such as cell wall perimeter, and area were calculated using an image identification algorithm, based on edge detection and morphological operators. The algorithm was developed using Matlab.
Resumo:
As dictated by s 213 of the Body Corporate and Community Management Act 1997 (Qld), the seller of a proposed lot is required to provide the buyer with a disclosure statement before the contract is entered into. Where the seller subsequently becomes aware that information contained in the disclosure statement was inaccurate when the contract was entered into or the disclosure statement would not be accurate if now given as a disclosure statement, the seller must, within 14 days, give the buyer a further statement rectifying the inaccuracies in the disclosure statement. Provided the contract has not been settled, where a further statement varies the disclosure statement to such a degree that the buyer would be materially prejudiced if compelled to complete the contract, the buyer may cancel the contract by written notice given to the seller within 14 days, or a longer period as agreed between the parties, after the seller gives the buyer the further statement. The term ‘material prejudice’ was considered by Wilson J in Wilson v Mirvac Queensland Pty Ltd.
Resumo:
In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in a wide spectrum of areas, ranging from nondestructive testing for the detection of materials defects to monitoring of microseismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary longitudinal waves), S waves (shear/transverse waves) and Rayleigh (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use acoustic emission technique for accurate identification of source, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals along with the characteristics of the source. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location and its characteristics in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.
Resumo:
The decision of Wilson J in Wilson v Mirvac Queensland Pty Ltd was the subject of an article in an earlier edition of this journal. At that time, it was foreshadowed that the decision was to be taken on appeal. The decision of the Court of Appeal in Mirvac Queensland Pty Ltd v Wilson is considered in this article.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. AE is one of the several non-destructive testing (NDT) techniques currently used for structural health monitoring (SHM) of civil, mechanical and aerospace structures. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. Despite these advantages, several challenges still exist in successful application of AE monitoring. Accurate localization of AE sources, discrimination between genuine AE sources and spurious noise sources and damage quantification for severity assessment are some of the important issues in AE testing and will be discussed in this paper. Various data analysis and processing approaches will be applied to manage those issues.
Resumo:
Columns are one of the key load bearing elements that are highly susceptible to vehicle impacts. The resulting severe damages to columns may leads to failures of the supporting structure that are catastrophic in nature. However, the columns in existing structures are seldom designed for impact due to inadequacies of design guidelines. The impact behaviour of columns designed for gravity loads and actions other than impact is, therefore, of an interest. A comprehensive investigation is conducted on reinforced concrete column with a particular focus on investigating the vulnerability of the exposed columns and to implement mitigation techniques under low to medium velocity car and truck impacts. The investigation is based on non-linear explicit computer simulations of impacted columns followed by a comprehensive validation process. The impact is simulated using force pulses generated from full scale vehicle impact tests. A material model capable of simulating triaxial loading conditions is used in the analyses. Circular columns adequate in capacity for five to twenty story buildings, designed according to Australian standards are considered in the investigation. The crucial parameters associated with the routine column designs and the different load combinations applied at the serviceability stage on the typical columns are considered in detail. Axially loaded columns are examined at the initial stage and the investigation is extended to analyse the impact behaviour under single axis bending and biaxial bending. The impact capacity reduction under varying axial loads is also investigated. Effects of the various load combinations are quantified and residual capacity of the impacted columns based on the status of the damage and mitigation techniques are also presented. In addition, the contribution of the individual parameter to the failure load is scrutinized and analytical equations are developed to identify the critical impulses in terms of the geometrical and material properties of the impacted column. In particular, an innovative technique was developed and introduced to improve the accuracy of the equations where the other techniques are failed due to the shape of the error distribution. Above all, the equations can be used to quantify the critical impulse for three consecutive points (load combinations) located on the interaction diagram for one particular column. Consequently, linear interpolation can be used to quantify the critical impulse for the loading points that are located in-between on the interaction diagram. Having provided a known force and impulse pair for an average impact duration, this method can be extended to assess the vulnerability of columns for a general vehicle population based on an analytical method that can be used to quantify the critical peak forces under different impact durations. Therefore the contribution of this research is not only limited to produce simplified yet rational design guidelines and equations, but also provides a comprehensive solution to quantify the impact capacity while delivering new insight to the scientific community for dealing with impacts.