969 resultados para Beta-hidroxibutirato
Resumo:
Myocardial hypertrophy and dysfunction occur in response to excessive catecholaminergic drive. Adverse cardiac remodelling is associated with activation of proinflammatory cytokines in the myocardium. To test the hypothesis that exercise training can prevent myocardial dysfunction and production of proinflammatory cytokines induced by beta-adrenergic hyperactivity, male Wistar rats were assigned to one of the following four groups: sedentary non-treated (Con); sedentary isoprenaline treated (Iso); exercised non-treated (Ex); and exercised plus isoprenaline (Iso+Ex). Echocardiography, haemodynamic measurements and isolated papillary muscle were used for functional evaluations. Real-time RT-PCR and Western blot were used to quantify tumour necrosis factor alpha, interleukin-6, interleukin-10 and transforming growth factor beta(1) (TGF-beta(1)) in the tissue. NF-kappa B expression in the nucleus was evaluated by immunohistochemical staining. The Iso rats showed a concentric hypertrophy of the left ventricle (LV). These animals exhibited marked increases in LV end-diastolic pressure and impaired myocardial performance in vitro, with a reduction in the developed tension and maximal rate of tension increase and decrease, as well as worsened recruitment of the Frank-Starling mechanism. Both gene and protein levels of tumour necrosis factor alpha and interleukin-6, as well as TGF-beta(1) mRNA, were increased. In addition, the NF-kappa B expression in the Iso group was significantly raised. In the Iso+Ex group, the exercise training had the following effects: (1) it prevented LV hypertrophy; (ii) it improved myocardial contractility; (3) it avoided the increase of proinflammatory cytokines and improved interleukin-10 levels; and (4) it attenuated the increase of TGF-beta(1) mRNA. Thus, exercise training in a model of beta-adrenergic hyperactivity can avoid the adverse remodelling of the LV and inhibit inflammatory cytokines. Moreover, the cardioprotection is related to beneficial effects on myocardial performance.
Resumo:
Objectives: E-cadherin and beta-catenin are adhesion molecules responsible for the maintenance of normal epithelial cell phenotype. A disturbance in epithelial cell adhesion, which leads to a more invasive and metastatic phenotype, is a hallmark of tumor progression. Several immunohistochemical studies have reported a strong correlation between loss of their expression to higher stage and grade in prostate carcinoma, but their influence in metastatic process is not yet known. The aim of this study is to verify the role of adhesion molecules in the progression of prostate cancer (PC), assessing the expression of E-cadherin and beta-catenin in bone metastasis. Materials and Methods: Twenty-eight bone metastases of prostate carcinoma were submitted to immunohistochemistry analysis for E-cadherin and beta-catenin expression. In 6 patients, we were able to assess the expression of the adhesion molecules in the primary tumors and their respective metastases. The definition of normal expression for both antibodies was strong and diffuse expression in more than 70% of tumor cells. Results: In bone metastases, there was loss of expression of E-cadherin and beta-catenin in 86% and 82%, respectively. Among the primary tumors, E-cadherin and beta-catenin expression was normal in 83% and 50% cases, respectively. Considering the 6 patients with paired primary and bone metastasis, we found loss of expression for both E-cadherin and beta-catenin in most of the cases. Conclusions: Comparing primary PC and its metastasis, we showed persistent loss of E-cadherin and beta-catenin expression. This phenomenon may be related to metastatic potential in PC, because we have shown underexpression for E-cadherin and beta-catenin in 86% and 82% of bone metastases.
Resumo:
Aggregates of the amyloid-P peptide (A beta) play a central role in the pathogenesis of Alzheimer`s disease (AD). Identification of proteins that physiologically bind A beta and modulate its aggregation and neurotoxicity could lead to the development of novel disease-modifying approaches in AD. By screening a phage display peptide library for high affinity ligands of aggregated A beta(1-42), We isolated a peptide homologous to a highly conserved amino acid sequence present in the N-terminus of apolipoprotein A-I (apoA-I). We show that purified human apoA-I and A beta form non-covalent complexes and that interaction with apoA-I affects the morphology of amyloid aggregates formed by A beta. Significantly, A beta/apoA-I complexes were also detected in cerebrospinal fluid from AD patients. Interestingly, apoA-I and apoA-I-containing reconstituted high density lipoprotein particles protect hippocampal neuronal cultures from A beta-induced oxidative stress and neurodegeneration. These results suggest that human apoA-I modulates A beta aggregation and A beta-induced neuronal damage and that the A beta-binding domain in apoA-I may constitute a novel framework for the design of inhibitors of A beta toxicity. (C) 2009 Published by Elsevier Ltd.
Resumo:
The objective of this study is to evaluate the prevalence of antiphospholipid antibodies, mainly anti-beta(2)-glycoprotein I (anti-beta(2)-GPI), and their possible clinical and laboratory relevance in mixed connective tissue disease (MCTD). This study included 39 consecutive patients with MCTD (Kasukawa`s criteria) from January, 2005, to March, 2007, and compared them with 21 age- and sex-matched healthy controls. IgG and IgM anticardiolipin (aCL) and anti-beta(2)-GPI were measured by ELISA. Lupus anticoagulant (LA) was detected by functional coagulation tests. Medium to high titres of aCL and anti-beta(2)-GPI antibodies were found in sera from four (10.2%) MCTD patients. One of these patients was found to be positive for IgM aCL, IgM anti-beta(2)-GPI and LA antibodies simultaneously. Additionally, this patient had a previous history of foetal loss in the second trimester and new-onset pulmonary arterial hypertension (PAH). The other three patients had none of the manifestations of antiphospholipid syndrome (APS) or PAH. The mean value of IgG anti-beta(2)-GPI was higher among those MCTD patients with PAH than in the group without PAH (34.2 +/- 46.8 vs 12.3 +/- 9.1, P = 0.018). None of the controls were positive for antiphospholipid antibodies. High to moderate titres of anti-beta(2)-GPI as well as APS were rare in MCTD, and these antibodies may be correlated with the development of PAH in these patients. Lupus (2009) 18, 618-621.
Resumo:
Background/Aims: Abnormal inflammatory response has been associated to the pathogenesis of Alzheimer`s disease (AD) and may be a marker of an ongoing neurodegenerative process. The aim of this study was to evaluate the serum levels of interleukin-1 beta (IL-1 beta) in patients with mild cognitive impairment (MCI) and AD. Methods: One hundred and sixty-three older adults ( 58 with mild to moderate AD, 74 with MCI and 31 healthy controls) were recruited for this study. Serum IL-1 beta levels were measured by ELISA. Patients with MCI were subcategorized in single-domain amnestic (aMCI), nonamnestic (naMCI), and multiple-domain (mdMCI) subtypes. Results: Patients with AD and MCI ( all subtypes) had a significant increase in serum IL-1 beta levels as compared to controls (p = 0.03). Patients with mdMCI had serum IL-1 beta levels comparable to those with AD, and significantly higher than those observed in aMCI and naMCI ( p = 0.02). Discussion: The present study provides evidence that inflammatory mechanisms, represented by elevated IL-1 beta, are observed in patients with MCI, specifically in those with impairment in multiple cognitive domains. As these patients are at higher risk of conversion to dementia, we propose that an increased serum IL-1 beta level is a stage marker of the ongoing brain neurodegeneration in the continuum between normal ageing and AD. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
During mango ripening, soluble sugars that account for mango sweetening are accumulated through carbon supplied by both photosynthesis and starch degradation. The cultivar Keitt has a characteristic dependence on sugar accumulation during starch degradation, which takes place during ripening, only a few days after detachment from the tree. Most knowledge about starch degradation is based on seeds and leaves currently used as models. However, information about the mango fruit is scarce. This work presents the evaluation of alpha- and beta-amylases in the starch granule surface during fruit development and ripening. Extractable proteins were assayed for amylase activity and detected by immunofluorescence microscopy and correlated to gene expression. The results suggest that both amylases are involved in starch degradation during mango ripening, probably under the dependence of another signal triggered by the detachment from the mother-plant.
Resumo:
The aim of this study was to investigate whether the toxicity of saturated and polyunsaturated fatty acids (PUFA) on RINm5F cells is related to the phosphorylation state of Akt, ERK and PKC delta. The regulation of these kinases was compared in three experimental designs: (a) 4 h-exposure, (b) 4 h-exposure and a subsequent withdrawn of the FA for a 20 h period and (c) 24 h-exposure. Saturated and PUFA were toxic to RINm5F cells even at low concentrations. Also, evidence is provided for a late (i.e. the effect only appeared hours after the treatment) and a persistent regulation (i.e. maintenance of the effect for several hours) of Akt, ERK and PKC delta phosphorylation by the FA. Late activation of PKC delta seems important for palmitate cytotoxicity. Persistent activation of the survival proteins Akt and ERK by stearate, oleate and arachidonate might play an important role to prevent the toxic effect of posterior PKC delta activation. The results shown may explain why a short-period exposure to FA is not enough to induce cytotoxicity in pancreatic beta-cells, since survival pathways are activated. Besides, when this activation is persistent, it may overcome a posterior induction of death pathways. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: Sustained beta-adrenoreceptor activation promotes cardiac hypertrophy and cellular injury. Aims: To evaluate the cardioprotective effect of exercise on damage induced by beta-adrenergic hyperactivity. Methods: Male Wistar rats were randomised into four groups (n=8 per group): sedentary non-treated control (C), sedentary treated with isoproterenol 0.3 mg/kg/day administered subcutaneously for 8 days (1), exercised non-treated (E) and exercised plus isoproterenol administered during the last eight days of exercise (IE). Exercised animals ran on a treadmill for 1 h daily 6 times a week for 13 weeks. Results: Isoproterenol caused increases in left ventricle (LV) wet and dry weight/body weight ratio, LV water content and cardiomyocyte transverse diameter. Additionally, isoproterenol induced severe cellular lesions, necrosis, and apoptosis, increased collagen content and reduced capillary and fibre fractional areas. Notably, all of these abnormalities were completely prevented by exercise. Conclusion: Our data have demonstrated that complete cardioprotection is possible through exercise training; by preventing p-adrenergic hyperactivity-induced cardiac hypertrophy and structural injury. (c) 2008 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
Pulmonary macrophages (PM), which are CD11b/CD18(+) and CD23(+), may be involved in the onset of inflammatory events caused by Paracoccidioides brasiliensis in the lungs. In the present study, we measured the nitric oxide (NO) and interleukin in PM production after intratracheal (i.t.) inoculation of an enriched beta-glucan cell wall fraction from P. brasiliensis (Fraction F1). BALB/c and C57/BL6 (B6) mice were i.t. treated with Fraction F1, and their PM were restimulated in vitro with LPS and interferon-gamma up to 14 days after treatment. Macrophages BALB/c mice produced less NO than PM from B6 mice. The lower NO production was caused by higher production of TGF-beta by pulmonary macrophages of BALB/c and was abrogated by anti-TGF-beta MoAb in vitro and in vivo. Other interleukins such as IL-10, IL-4 and a combination of IL-1, TNF-alpha and IL-6 were not involved in NO production induced by Fraction F1. Expression of CD11b increases and expression of CD23 decreases on PM of BALB/c mice after in vivo treatment whereas PM of B6 mice do not show a variation of their phenotype. Moreover, the ability of pulmonary macrophages to induce lymphocyte proliferation was reduced in mixed cultures of CD11b(+) or CD23(+) macrophages but was restored when lymphocytes were cultivated in the presence of NO inhibitor (L-NMMA). Thus, the results presented herein indicate that in BALB/c but not in B6 mice TGF- is strongly induced by Fraction 1 in PM in vivo and suppresses NO production. Low NO production by PM is associated with a change in CD11b/CD23 expression and with a high lymphocyte proliferative response. Thus, CD11b(+)/CD23(+) PM modulate NO and TGF-beta production in the pulmonary microenvironment.
Resumo:
Early Alzheimer`s disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)A beta 42, but not oA beta 40 or extracellular oA beta 42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oA beta 42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD.
Resumo:
Objective: To investigate glomerular development and expression of insulin and insulin-like growth factor receptors in an experimental model of intrauterine growth restriction (IUGR). Material and Methods: We studied three groups of Sprague-Dawley fetuses: IUGR - restricted by ligation of the right uterine artery; C-IUGR - left horn controls, and EC - external controls (non-manipulated). Body and organs were weighed, and glomerular number and volume were analyzed. Expression of IR beta, IRS-1, IRS-2 and IGF-IR beta was analyzed in liver, intestine and kidneys by immunoblotting. Results: Organ/body weight ratios were similar. In IUGR, glomerular number and volume were increased compared to C-IUGR and EC (p < 0.001). In the IUGR liver, increases were found in IGF-IR beta compared to C-IUGR and EC; IR beta compared to EC, and IRS-2 compared to C-IUGR. However, decreases in IR beta were noted in IUGR compared to C-IUGR; IRS-1 compared to C-IUGR and EC, and IRS-2 compared to EC. In IUGR intestine, increases were detected in IR beta, IRS-1 and IGF-IR beta compared to C-IUGR and EC. In IUGR kidneys, increases were observed in IR beta and IGF-IR beta compared to C-IUGR and EC, and IRS-1 compared to EC. Decreased IRS-2 in the intestine and kidney were noticed in IUGR compared to C-IUGR and EC. Conclusion: IUGR fetuses had less glomeruli and alterations in insulin receptors, which may be associated with an increased risk of disease occurrence in adulthood. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Background: Deficiency of 11 beta-hydroxylase results in the impairment of the last step of cortisol synthesis. In females, the phenotype of this disorder includes different degrees of genital ambiguity and arterial hypertension. Mutations in the CYP11B1 gene are responsible for this disease. Objective: The objective of the study was to screen the CYP11B1 gene for mutations in two unrelated Brazilian females with congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Design: The coding and intron-exon junction regions of CYP11B1 were totally sequenced. A putative splice mutation was further investigated by minigene transcription. Results: We report two novel CYP11B1 mutations in these Brazilian patients. An Arabian Lebanese descendent female was found to be homozygous for a cytosine insertion at the beginning of exon 8, changing the 404 arginine to proline. It alters the open reading frame, creating a putative truncated protein at 421 residue, which eliminates the domain necessary for the association of heme prosthetic group. A severely virilized female was homozygous for the g. 2791G>A transition in the last position of exon 4. This nucleotide is also part of 5` intron 4 donor splice site consensus sequence. Minigene experiments demonstrated that g. 2791G>A activated an alternative splice site within exon 4, leading to a 45-bp deletion in the transcript. The putative translation of such modified mRNA indicates a truncated protein at residue 280. Conclusions: We describe two novel mutations, g. 4671_4672insC and g. 2791G>A, that drastically affects normal protein structure. These mutations abolish normal enzyme activity, leading to a severe phenotype of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. (J Clin Endocrinol Metab 94: 3481-3485, 2009)
Resumo:
BACKGROUND - Multibacillary (MB) leprosy may be manifested with antiphospholipid antibodies (aPL), among which anti-beta(2)GP1 (beta(2)-glycoprotein 1). High titers of aPL are associated with APS (Antiphospholipid Syndrome), characterized by thrombosis. The mutation Val247Leu in the domain V of beta(2)GP1 exposes hidden epitopes with consequent development of anti-beta(2)GP1 antibodies. OBJECTIVE: To evaluate the Val247Leu polymorphism of beta(2)GP1 gene and its correlation with anti-beta(2)GP1 antibodies in leprosy patients. METHODS: The Val247Leu polymorphism was performed by PCR-RFLP and anti-beta(2)GP1 antibodies were measured by ELISA. RESULTS: The genotypic Val/Val was more prevalent in the leprosy group, compared to controls. Regarding the 7 MB patients with APS, four presented heterozygosis and three, Val/Val homozygosis. Although higher titrations of anti-beta(2)GP1 IgM antibodies were seen in MB leprosy group with Val/Leu and Val/Val genotypes, there was no statistical difference when compared to Leu/Leu genotype. CONCLUSION: The prevalence of Val/Val homozygosis in leprosy group can partially justify the presence of anti-beta(2)GP1 IgM antibodies in MB leprosy. The description of heterozygosis and Val/Val homozygosis in 7 patients with MB leprosy and thrombosis corroborates the implication of anomalous phenotype expression of beta(2)GP1 and development of anti-beta(2)GP1 antibodies, with consequent thrombosis and APS.
Resumo:
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.
Resumo:
A genetic polymorphism of the beta 2-glycoprotein I (beta 2-GPI) is recognized by antiphospholipid antibodies (aPL) and may even play a role in the development of antiphospholipid syndrome (APS). The objectives of this study were to determine a Val/Leu SNP at position 247 of the beta 2-GPI gene in Brazilian patients with APS and to compare these data with clinical and laboratory manifestations. Polymorphism assignment was performed by PCR followed by Rsa I restriction endonuclease. The titration of anti-beta 2-GPI antibodies was detected by ELISA. The results showed significantly higher frequencies of the V-encoding allele and the homozygous VV genotype in patients with APS than in control subjects (OR = 1.781, P = 0.0068; and OR = 6.413, P < 0.0001, respectively). The frequency of this genotype was also significantly higher in patients with arterial and venous thrombosis than in the control group (52% and 44%, respectively, versus 13%). Anti-beta 2-GPI-positive patients had significantly higher frequencies of the VV genotype than the controls subjects (OR = 8.179, P < 0.0001). These results suggest that the V-encoding allele and the homozygous VV genotype at position 247 of the beta 2-GPI gene may play a role in the generation of anomalous beta 2-GPI, with consequent auto-antibody production, and in phenotype expression of arterial and venous thrombosis in APS patients.