957 resultados para Bed nucleus of the stria ter- minalis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the cardiovascular effects of L-glutamate (L-glu) microinjection into the hypothalamic paraventricular nucleus (PVN) as well as the mechanisms involved in their mediation. L-glu microinjection into the PVN caused dose-related pressor and tachycardiac responses in unanesthetized rats. These responses were blocked by intravenous (i.v.) pretreatment with the ganglion blocker pentolinium (PE; 5 mg/kg), suggesting sympathetic mediation. Responses to L-glu were not affected by local microinjection of the selective non-NMDA receptor antagonist NBQX (2 nmol) or by local microinjection of the selective NMDA receptor antagonist LY235959 (LY; 2 nmol). However, the tachycardiac response was changed to a bradycardiac response after treatment with LY235959, suggesting that NMDA receptors are involved in the L-glu heart rate response. Local pretreatment with LY235959 associated with systemic PE or dTyr(CH(2))(5)(Me)AVP (50 mu g/kg) respectively potentiated or blocked the response to L-glu, suggesting that L-glu responses observed after LY235959 are vasopressin mediated. The increased pressor and bradycardiac responses observed after LY + PE was blocked by subsequent i.v. treatment with the V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP, suggesting vasopressin mediation. The pressor and bradycardiac response to L-glu microinjection into the PVN observed in animals pretreated with LY + PE was progressively inhibited and even blocked by additional pretreatment with increasing doses of NBQX (2, 10, and 20 nmol) microinjected into the PVN, suggesting its mediation by local non-NMDA receptors. In conclusion, results suggest the existence of two glutamatergic pressor pathways in the PVN: one sympathetic pathway that is mediated by NMDA receptors and a vasopressinergic pathway that is mediated by non-NMDA receptors. (C) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) evokes escape, a defensive behavior that has been related to panic attacks. Injection of 5-HT(1A) or 5-HT(2A) receptor agonists into this midbrain area inhibits this response. It has been proposed that the impairment of 5-HT mechanisms controlling escape at the level of the DPAG may underlie the susceptibility to panic attacks that characterizes the panic disorder. In this study we evaluated the effects of the pharmacological manipulation of the dorsal raphe nucleus (DRN), which are the main source of 5-HT input to the DPAG, on the escape response evoked in rats by the intra-DPAG injection of the nitric oxide donor SIN-1. The results showed that DRN administration of the 5-HT(1A) receptor agonist 8-OH-DPAT which inhibits the activity of 5-HT neurons favored the expression of escape induced by SIN-1. Intra-DRN injection of the excitatory amino acid kainic acid or the 5-HT(1A) receptor antagonist WAY-100635 did not change escape expression. However, both compounds fully blocked the escape reaction generated by intra-DPAG injection of the excitatory amino acid D,L-homocysteic acid (DLH). Overall, the results indicate that 5-HT neurons in the DRN exert a bidirectional control upon escape behavior generated by the DPAG. Taking into account the effect of WAY-100635 on DLH-induced escape, they also strengthen the view that DRN 5-HT(1A) autoreceptors are under tonic inhibitory influence by 5-HT. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. in the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 mu M WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the varmiloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The male hypermethylated (MHM) region, located near the middle of the short arm of the Z chromosome of chickens, consists of approximately 210 tandem repeats of a BamHI 2.2-kb sequence unit. Cytosines of the CpG dinucleotides of this region are extensively methylated on the two Z chromosomes in the male but much less methylated on the single Z chromosome in the female. The state of methylation of the MHM region is established after fertilization by about the 1-day embryonic stage. The MHM region is transcribed only in the female from the particular strand into heterogeneous, high molecular-mass, non-coding RNA, which is accumulated at the site of transcription, adjacent to the DMRT1 locus, in the nucleus. The transcriptional silence of the MHM region in the male is most likely caused by the CpG methylation, since treatment of the male embryonic fibroblasts with 5-azacytidine results in hypo-methylation and active transcription of this region. In ZZW triploid chickens, MHM regions are hypomethylated and transcribed on the two Z chromosomes, whereas MHM regions are hypermethylated and transcriptionally inactive on the three Z chromosomes in ZZZ triploid chickens, suggesting a possible role of the W chromosome on the state of the MHM region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a numerical study of fluidized-bed coating on thin plates using an orthogonal collocation technique. Inclusion of the latent heat of fusion term in the boundary conditions of the mathematical model accounts for the fact that some polymer powders used in coating may be partially crystalline. Predictions of coating thickness on flat plates were made with actual polymers used in fluidized-bed coating. Reasonably good agreement between numerical predictions of the coating thickness and experimental coating data of Richart was obtained for steel panels preheated to 316 degreesC. A good agreement was also obtained between numerical predictions and our coating thickness data for nylon-11 and polyethylene powders. Predicted coating thickness for polyethylene powder on flat plates were obtained with values of heat transfer coefficient closer to those obtained from our experiments. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated segments of the perfused rat tail artery display a high basal tone when compared to other isolated arteries such as the mesenteric and are suitable for the assay of vasopressor agents. However, the perfusion of this artery in the entire tail has not yet been used for functional studies. The main purpose of the present study was to identify some aspects of the vascular reactivity of the rat tail vascular bed and validate this method to measure vascular reactivity. The tail severed from the body was perfused with Krebs solution containing different Ca2+ concentrations at different flow rates. Rats were anesthetized with sodium pentobarbital (65 mg/kg) and heparinized (500 U). The tail artery was dissected near the tail insertion, cannulated and perfused with Krebs solution plus 30 µM EDTA at 36oC and 2.5 ml/min and the procedures were started after equilibration of the perfusion pressure. In the first group a dose-response curve to phenylephrine (PE) (0.5, 1, 2 and 5 µg, bolus injection) was obtained at different flow rates (1.5, 2.5 and 3.5 ml/min). The mean perfusion pressure increased with flow as well as PE vasopressor responses. In a second group the flow was changed (1.5, 2, 2.5, 3 and 3.5 ml/min) at different Ca2+ concentrations (0.62, 1.25, 2.5 and 3.75 mM) in the Krebs solution. Increasing Ca2+ concentrations did not alter the flow-pressure relationship. In the third group a similar protocol was performed but the rat tail vascular bed was perfused with Krebs solution containing PE (0.1 µg/ml). There was an enhancement of the effect of PE with increasing external Ca2+ and flow. PE vasopressor responses increased after endothelial damage with air and CHAPS, suggesting an endothelial modulation of the tone of the rat tail vascular bed. These experiments validate the perfusion of the rat tail vascular bed as a method to investigate vascular reactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ART-WiSe (Architecture for Real-Time communications in Wireless Sensor Networks) framework aims at the design of new communication architectures and mechanisms for time-sensitive Wireless Sensor Networks (WSNs). We adopted a two-tiered architecture where an overlay Wireless Local Area Network (Tier 2) serves as a backbone for a WSN (Tier 1), relying on existing standard communication protocols and commercial-off-the-shell (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2. In this line, a test-bed application is being developed for assessing, validating and demonstrating the ART-WiSe architecture. A pursuit-evasion application was chosen since it fulfils a number of requirements, namely it is feasible and appealing and imposes some stress to the architecture in terms of timeliness. To develop the testbed based on the previously referred technologies, an implementation of the IEEE 8021.5.4/ZigBee protocols is being carried out, since there is no open source available to the community. This paper highlights some relevant aspects of the ART-WiSe architecture, provides some intuition on the protocol stack implementation and presents a general view over the envisaged test-bed application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation for the Master degree in Biotechnology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: We determined the effects of losartan and PD 123319 (antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar¹, Ala8] ANG II (a relatively peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on water and 3% NaCl intake, and the diuretic, natriuretic, and pressor effects induced by administration of angiotensin II (ANG II) into the medial septal area (MSA) of conscious rats. METHODS: Holtzman rats were used . Animals were anesthetized with tribromoethanol (20 mg) per 100 grams of body weight, ip. A stainless steel guide cannula was implanted into the MSA and PVN. All drugs were injected in 0.5-mul volumes for 10-15 seconds. Seven days after brain surgery, water and 3% NaCl intake, urine and sodium excretion, and arterial blood pressure were measured. RESULTS: Losartan (40 nmol) and [Sar¹, Ala8] ANG II (40 nmol) completely eliminated whereas PD 123319 (40 nmol) partially blocked the increase in water and sodium intake and the increase in arterial blood pressure induced by ANG II (10 nmol) injected into the MSA. The PVN administration of PD 123319 and [Sar¹, Ala8] ANG II blocked whereas losartan attenuated the diuresis and natriuresis induced by MSA administration of ANG II. CONCLUSION: MSA involvement with PVN on water and sodium homeostasis and arterial pressure modulation utilizing ANGII receptors is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclei bind yeast vacuoles via nucleus-vacuole (NV) junctions. Under nutrient restriction, NV junctions invaginate and release vesicles filled with nuclear material into vacuoles, resulting in piecemeal microautophagy of the nucleus (PMN). We show that the electrochemical gradient across the vacuolar membrane promotes invagination of NV junctions. Existing invaginations persist independently of the gradient, but final release of PMN vesicles requires again V-ATPase activity. We find that NV junctions form a diffusion barrier on the vacuolar membrane that excludes V-ATPase but is enriched in the VTC complex and accessible to other membrane-integral proteins. V-ATPase exclusion depends on the NV junction proteins Nvj1p,Vac8p, and the electrochemical gradient. It also depends on factors of lipid metabolism, such as the oxysterol binding protein Osh1p and the enoyl-CoA reductase Tsc13p, which are enriched in NV junctions, and on Lag1p and Fen1p. Our observations suggest that NV junctions form in two separable steps: Nvj1p and Vac8p suffice to establish contact between the two membranes. The electrochemical potential and lipid-modifying enzymes are needed to establish the vacuolar diffusion barrier, invaginate NV junctions, and form PMN vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher plants possess multiple members of the phytochrome family of red, far-red light sensors to modulate plant growth and development according to competition from neighbors. The phytochrome family is composed of the light-labile phyA and several light-stable members (phyB-phyE in Arabidopsis). phyA accumulates to high levels in etiolated seedlings and is essential for young seedling establishment under a dense canopy. In photosynthetically active seedlings high levels of phyA counteract the shade avoidance response. phyA levels are maintained low in light-grown plants by a combination of light-dependent repression of PHYA transcription and light-induced proteasome-mediated degradation of the activated photoreceptor. Light-activated phyA is transported from the cytoplasm where it resides in darkness to the nucleus where it is needed for most phytochrome-induced responses. Here we show that phyA is degraded by a proteasome-dependent mechanism both in the cytoplasm and the nucleus. However, phyA degradation is significantly slower in the cytoplasm than in the nucleus. In the nucleus phyA is degraded in a proteasome-dependent mechanism even in its inactive Pr (red light absorbing) form, preventing the accumulation of high levels of nuclear phyA in darkness. Thus, light-induced degradation of phyA is in part controlled by a light-regulated import into the nucleus where the turnover is faster. Although most phyA responses require nuclear phyA it might be useful to maintain phyA in the cytoplasm in its inactive form to allow accumulation of high levels of the light sensor in etiolated seedlings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time constant of cerebral arterial bed (in brief time constant) is a product of brain arterial compliance (C(a)) and resistance (CVR). We tested the hypothesis that in normal subjects, changes in end-tidal CO(2) (EtCO(2)) affect the value of the time constant. C(a) and CVR were estimated using mathematical transformations of arterial pressure (ABP) and transcranial Doppler (TCD) cerebral blood flow velocity waveforms. Responses of the time constant to controlled changes in EtCO(2) were compared in 34 young volunteers. Hypercapnia shortened the time constant (0.22 s [0.17, 0.26] vs. 0.16 s [0.13, 0.20]; p = 0.000001), while hypocapnia lengthened the time constant (0.22 s [0.17, 0.26] vs. 0.23 s [0.19, 0.32]; p < 0.0032). The time constant was negatively correlated with changes in EtCO(2) (R(partial) = -0.68, p < 0.000001). This was associated with a decrease in CVR when EtCO(2) increased (R(partial) = -0.80, p < 0.000001) and C(a) remained independent of changes in EtCO(2). C(a) was negatively correlated with mean ABP (R(partial) = -0.68, p < 0.000001). In summary, the time constant shortens with increasing EtCO(2). Its potential role in cerebrovascular investigations needs further studies.