898 resultados para Bayesian shared component model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the mixed logit (ML) using Bayesian methods was employed to examine willingness-to-pay (WTP) to consume bread produced with reduced levels of pesticides so as to ameliorate environmental quality, from data generated by a choice experiment. Model comparison used the marginal likelihood, which is preferable for Bayesian model comparison and testing. Models containing constant and random parameters for a number of distributions were considered, along with models in ‘preference space’ and ‘WTP space’ as well as those allowing for misreporting. We found: strong support for the ML estimated in WTP space; little support for fixing the price coefficient a common practice advocated and adopted in the environmental economics literature; and, weak evidence for misreporting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Bayesian method of classifying observations that are assumed to come from a number of distinct subpopulations is outlined. The method is illustrated with simulated data and applied to the classification of farms according to their level and variability of income. The resultant classification shows a greater diversity of technical charactersitics within farm types than is conventionally the case. The range of mean farm income between groups in the new classification is wider than that of the conventional method and the variability of income within groups is narrower. Results show that the highest income group in 2000 included large specialist dairy farmers and pig and poultry producers, whilst in 2001 it included large and small specialist dairy farms and large mixed dairy and arable farms. In both years the lowest income group is dominated by non-milk producing livestock farms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetic polymorphisms in deoxyribonucleic acid coding regions may have a phenotypic effect on the carrier, e.g. by influencing susceptibility to disease. Detection of deleterious mutations via association studies is hampered by the large number of candidate sites; therefore methods are needed to narrow down the search to the most promising sites. For this, a possible approach is to use structural and sequence-based information of the encoded protein to predict whether a mutation at a particular site is likely to disrupt the functionality of the protein itself. We propose a hierarchical Bayesian multivariate adaptive regression spline (BMARS) model for supervised learning in this context and assess its predictive performance by using data from mutagenesis experiments on lac repressor and lysozyme proteins. In these experiments, about 12 amino-acid substitutions were performed at each native amino-acid position and the effect on protein functionality was assessed. The training data thus consist of repeated observations at each position, which the hierarchical framework is needed to account for. The model is trained on the lac repressor data and tested on the lysozyme mutations and vice versa. In particular, we show that the hierarchical BMARS model, by allowing for the clustered nature of the data, yields lower out-of-sample misclassification rates compared with both a BMARS and a frequen-tist MARS model, a support vector machine classifier and an optimally pruned classification tree.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Bayesian Model Averaging approach to the estimation of lag structures is introduced, and applied to assess the impact of R&D on agricultural productivity in the US from 1889 to 1990. Lag and structural break coefficients are estimated using a reversible jump algorithm that traverses the model space. In addition to producing estimates and standard deviations for the coe¢ cients, the probability that a given lag (or break) enters the model is estimated. The approach is extended to select models populated with Gamma distributed lags of di¤erent frequencies. Results are consistent with the hypothesis that R&D positively drives productivity. Gamma lags are found to retain their usefulness in imposing a plausible structure on lag coe¢ cients, and their role is enhanced through the use of model averaging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bayesian Model Averaging (BMA) is used for testing for multiple break points in univariate series using conjugate normal-gamma priors. This approach can test for the number of structural breaks and produce posterior probabilities for a break at each point in time. Results are averaged over specifications including: stationary; stationary around trend and unit root models, each containing different types and number of breaks and different lag lengths. The procedures are used to test for structural breaks on 14 annual macroeconomic series and 11 natural resource price series. The results indicate that there are structural breaks in all of the natural resource series and most of the macroeconomic series. Many of the series had multiple breaks. Our findings regarding the existence of unit roots, having allowed for structural breaks in the data, are largely consistent with previous work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential for spatial dependence in models of voter turnout, although plausible from a theoretical perspective, has not been adequately addressed in the literature. Using recent advances in Bayesian computation, we formulate and estimate the previously unutilized spatial Durbin error model and apply this model to the question of whether spillovers and unobserved spatial dependence in voter turnout matters from an empirical perspective. Formal Bayesian model comparison techniques are employed to compare the normal linear model, the spatially lagged X model (SLX), the spatial Durbin model, and the spatial Durbin error model. The results overwhelmingly support the spatial Durbin error model as the appropriate empirical model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2005 and 2007. These minima have not been predicted in the IPCC AR4 report, suggesting that the sea ice component of climate models should more realistically represent the processes controlling the sea ice mass balance. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds accumulate on the surface of sea ice from snow and sea ice melt and their presence reduces the albedo of the ice cover, leading to further melt. Toward the end of the melt season, melt ponds cover up to 50% of the sea ice surface. We have developed a melt pond evolution theory. Here, we have incorporated this melt pond theory into the Los Alamos CICE sea ice model, which has required us to include the refreezing of melt ponds. We present results showing that the presence, or otherwise, of a representation of melt ponds has a significant effect on the predicted sea ice thickness and extent. We also present a sensitivity study to uncertainty in the sea ice permeability, number of thickness categories in the model representation, meltwater redistribution scheme, and pond albedo. We conclude with a recommendation that our melt pond scheme is included in sea ice models, and the number of thickness categories should be increased and concentrated at lower thicknesses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a model of market participation in which the presence of non-negligible fixed costs leads to random censoring of the traditional double-hurdle model. Fixed costs arise when household resources must be devoted a priori to the decision to participate in the market. These costs, usually of time, are manifested in non-negligible minimum-efficient supplies and supply correspondence that requires modification of the traditional Tobit regression. The costs also complicate econometric estimation of household behavior. These complications are overcome by application of the Gibbs sampler. The algorithm thus derived provides robust estimates of the fixed-costs, double-hurdle model. The model and procedures are demonstrated in an application to milk market participation in the Ethiopian highlands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article explores the problematic nature of the label “home ownership” through a case study of the English model of shared ownership, one of the methods used by the UK government to make home ownership affordable. Adopting a legal and socio-legal analysis, the article considers whether shared ownership is capable of fulfilling the aspirations households have for home ownership. To do so, the article considers the financial and nonfinancial meanings attached to home ownership and suggests that the core expectation lies in ownership of the value. The article demonstrates that the rights and responsibilities of shared owners are different in many respects from those of traditional home owners, including their rights as regards ownership of the value. By examining home ownership through the lens of shared ownership the article draws out lessons of broader significance to housing studies. In particular, it is argued that shared ownership shows the limitations of two dichotomies commonly used in housing discourse: that between private and social housing; and the classification of tenure between owner-occupiers and renters. The article concludes that a much more nuanced way of referring to home ownership is required, and that there is a need for a change of expectations amongst consumers as to what sharing ownership means.