999 resultados para Bayesian operation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is one of the greenhouse gases that can contribute to global warming. Spatial variability of N2O can lead to large uncertainties in prediction. However, previous studies have often ignored the spatial dependency to quantify the N2O - environmental factors relationships. Few researches have examined the impacts of various spatial correlation structures (e.g. independence, distance-based and neighbourhood based) on spatial prediction of N2O emissions. This study aimed to assess the impact of three spatial correlation structures on spatial predictions and calibrate the spatial prediction using Bayesian model averaging (BMA) based on replicated, irregular point-referenced data. The data were measured in 17 chambers randomly placed across a 271 m(2) field between October 2007 and September 2008 in the southeast of Australia. We used a Bayesian geostatistical model and a Bayesian spatial conditional autoregressive (CAR) model to investigate and accommodate spatial dependency, and to estimate the effects of environmental variables on N2O emissions across the study site. We compared these with a Bayesian regression model with independent errors. The three approaches resulted in different derived maps of spatial prediction of N2O emissions. We found that incorporating spatial dependency in the model not only substantially improved predictions of N2O emission from soil, but also better quantified uncertainties of soil parameters in the study. The hybrid model structure obtained by BMA improved the accuracy of spatial prediction of N2O emissions across this study region.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific sub-regions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows how multiple interconnected microgrids can operate in autonomous mode in a self–healing medium voltage network. This is possible if based on network self– healing capability, the neighbour microgrids are interconnected and a surplus generation capacity is available in some of the Distributed Energy Resources (DERs) of the interconnected microgrids. This will reduce or prevent load shedding within the microgrids with less generation capacity. Therefore, DERs in a microgrid are controlled such that they share the local load within that microgrid as well as the loads in other interconnected microgrids. Different control algorithms are proposed to manage the DERs at different operating conditions. On the other hand, a Distribution Static Compensator (DSTATCOM) is employed to regulate the voltage. The efficacy of the proposed power control, sharing and management among DERs in multiple interconnected microgrids is validated through extensive simulation studies using PSCAD/EMTDC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates power management and control of DERs in an autonomous MG. The paper focuses on the control and performance of converter-interfaced DERs in voltage controlled mode. Several case studies are considered for a MG based on the different types of loads supplied by the MG (i.e. balanced three-phase, unbalanced, single-phase and harmonic loads). DERs are controlled by adjusting the voltage magnitude and angle in their converter output through droop control, in a decentralized concept. Based on this control method, DERs can successfully share the total demand of the MG in the presence of any type of loads. This includes proper total power sharing, unbalanced power sharing as well as harmonic power sharing, depending on the load types. The efficacy of the proposed power control, sharing and management among DERs in a microgrid is validated through extensive simulation studies using PSCAD/EMTDC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microgrid contains both distributed generators (DGs) and loads and can be viewed by a controllable load by utilities. The DGs can be either inertial synchronous generators or non-inertial converter interfaced. Moreover, some of them can come online or go offline in plug and play fashion. The combination of these various types of operation makes the microgrid control a challenging task, especially when the microgrid operates in an autonomous mode. In this paper, a new phase locked loop (PLL) algorithm is proposed for smooth synchronization of plug and play DGs. A frequency droop for power sharing is used and a pseudo inertia has been introduced to non-inertial DGs in order to match their response with inertial DGs. The proposed strategy is validated through PSCAD simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a discussion of the journal article: "Construcing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation". The article and discussion have appeared in the Journal of the Royal Statistical Society: Series B (Statistical Methodology).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms using indirect infer- ence. We embed this approach within a sequential Monte Carlo algorithm that is completely adaptive. This methodological development was motivated by an application involving data on macroparasite population evolution modelled with a trivariate Markov process. The main objective of the analysis is to compare inferences on the Markov process when considering two di®erent indirect mod- els. The two indirect models are based on a Beta-Binomial model and a three component mixture of Binomials, with the former providing a better ¯t to the observed data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on either a set of discrete or continuous models and outperforms other model discrimination approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bagasse stockpile operations have the potential to lead to adverse environmental and social impacts. Dust releases can cause occupational health and safety concerns for factory workers and dust emissions impact on the surrounding community. Preliminary modelling showed that bagasse depithing would likely reduce the environmental risks, particularly dust emissions, associated with large-scale bagasse stockpiling operations. Dust emission properties were measured and used for dispersion modelling with favourable outcomes. Modelling showed a 70% reduction in peak ground level concentrations of PM10 dust (particles with an aerodynamic diameter less than 10 μm) from operations on depithed bagasse stockpiles compared to similar operations on stockpiles of whole bagasse. However, the costs of a depithing operation at a sugar factory were estimated to be approximately $2.1 million in capital expenditure to process 100 000 t/y of bagasse and operating costs were 200 000 p.a. The total capital cost for a 10 000 t/y operation was approximately $1.6 million. The cost of depithing based on a discounted cash flow analysis was $5.50 per tonne of bagasse for the 100 000 t/y scenario. This may make depithing prohibitively expensive in many situations if installed exclusively as a dust control measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obtaining attribute values of non-chosen alternatives in a revealed preference context is challenging because non-chosen alternative attributes are unobserved by choosers, chooser perceptions of attribute values may not reflect reality, existing methods for imputing these values suffer from shortcomings, and obtaining non-chosen attribute values is resource intensive. This paper presents a unique Bayesian (multiple) Imputation Multinomial Logit model that imputes unobserved travel times and distances of non-chosen travel modes based on random draws from the conditional posterior distribution of missing values. The calibrated Bayesian (multiple) Imputation Multinomial Logit model imputes non-chosen time and distance values that convincingly replicate observed choice behavior. Although network skims were used for calibration, more realistic data such as supplemental geographically referenced surveys or stated preference data may be preferred. The model is ideally suited for imputing variation in intrazonal non-chosen mode attributes and for assessing the marginal impacts of travel policies, programs, or prices within traffic analysis zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was a step forward in developing an extension of the concept of constructability to include the post-occupancy stages of operation and maintenance. This was through an in-depth study of Australian health projects and interviews with professionals in the field. The thesis investigated how the operation and maintenance stakeholders can enter the initial planning, design and construction phases resulting in more efficient and effective delivery of infrastructure projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a robust place recognition algorithm for mobile robots that can be used for planning and navigation tasks. The proposed framework combines nonlinear dimensionality reduction, nonlinear regression under noise, and Bayesian learning to create consistent probabilistic representations of places from images. These generative models are incrementally learnt from very small training sets and used for multi-class place recognition. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions, blurring and moving objects. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images, respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autonomous navigation and picture compilation tasks require robust feature descriptions or models. Given the non Gaussian nature of sensor observations, it will be shown that Gaussian mixture models provide a general probabilistic representation allowing analytical solutions to the update and prediction operations in the general Bayesian filtering problem. Each operation in the Bayesian filter for Gaussian mixture models multiplicatively increases the number of parameters in the representation leading to the need for a re-parameterisation step. A computationally efficient re-parameterisation step will be demonstrated resulting in a compact and accurate estimate of the true distribution.