884 resultados para Basic problematization units
Resumo:
Building on the recommendations of the Bradley Review (2008), the Australian Federal government intends to promote a higher level of penetration of tertiary qualification across the broader Australian community which is anticipated to result in increased levels of standardisation across university degrees. In the field of property, tertiary academic programs are very closely aligned to the needs of a range of built environment professions and there are well developed synergies between the relevant professional bodies and the educational institutions. The strong nexus between the academic and the professional content is characterised by ongoing industry accreditation which nominates a range of outcomes which the academic programs must maintain across a range of specified metrics. Commonly, the accrediting bodies focus on standard of minimum requirements especially in the area of specialised subject areas where they require property graduates to demonstrate appropriate learning and attitudes. In addition to nominated content fields, in every undergraduate degree program there are also many other subjects which provide a richer experience for the students beyond the merely professional. This study focuses on the nonspecialised knowledge field which varies across the universities offering property degree courses as every university has the freedom to pursue its own policy for these non-specialised units. With universities being sensitive to their role of in the appropriate socialisation of new entrants, first year units have been used as a vehicle to support students’ transition into university education and the final year units seek to support students’ integration into the professional world. Consequentially, many property programs have to squeeze their property-specific units to accommodate more generic units for both first year and final year units and the resulting diversity is a feature of the current range of property degrees across Australia which this research will investigate. The matrix of knowledge fields nominated by the Australian Property Institute for accreditation of degrees accepted for Certified Practising Valuer (CPV) educational requirement and the complementary requirements of the other major accrediting body (RICS) are used to classify and compare similarities and differences across property degrees in the light of the streamlining anticipated from the Bradley Review.
Resumo:
Objective: To assess the cost-effectiveness of screening, isolation and decolonisation strategies in the control of methicillin-resistant Staphylococcus aureus (MRSA) in intensive care units (ICUs). Design: Economic evaluation. Setting: England and Wales. Population: ICU patients. Main outcome measures: Infections, deaths, costs, quality adjusted life years (QALYs), incremental cost-effectiveness ratios for alternative strategies, net monetary benefits (NMBs). Results: All strategies using isolation but not decolonisation improved health outcomes but increased costs. When MRSA prevalence on admission to the ICU was 5% and the willingness to pay per QALY gained was between £20,000 and £30,000, the best such strategy was to isolate only those patients at high risk of carrying MRSA (either pre-emptively or following identification by admission and weekly MRSA screening using chromogenic agar). Universal admission and weekly screening using polymerase chain reaction (PCR)-based MRSA detection coupled with isolation was unlikely to be cost-effective unless prevalence was high (10% colonised with MRSA on admission to the ICU). All decolonisation strategies improved health outcomes and reduced costs. While universal decolonisation (regardless of MRSA status) was the most cost-effective in the short-term, strategies using screening to target MRSA carriers may be preferred due to reduced risk of selecting for resistance. Amongst such targeted strategies, universal admission and weekly PCR screening coupled with decolonisation with nasal mupirocin was the most cost-effective. This finding was robust to ICU size, MRSA admission prevalence, the proportion of patients classified as high-risk, and the precise value of willingness to pay for health benefits. Conclusions: MRSA control strategies that use decolonisation are likely to be cost-saving in an ICU setting provided resistance is lacking, and combining universal PCR-based screening with decolonisation is likely to represent good value for money if untargeted decolonisation is considered unacceptable. In ICUs where decolonisation is not implemented there is insufficient evidence to support universal MRSA screening outside high prevalence settings.
Resumo:
The health system is one sector dealing with a deluge of complex data. Many healthcare organisations struggle to utilise these volumes of health data effectively and efficiently. Also, there are many healthcare organisations, which still have stand-alone systems, not integrated for management of information and decision-making. This shows, there is a need for an effective system to capture, collate and distribute this health data. Therefore, implementing the data warehouse concept in healthcare is potentially one of the solutions to integrate health data. Data warehousing has been used to support business intelligence and decision-making in many other sectors such as the engineering, defence and retail sectors. The research problem that is going to be addressed is, "how can data warehousing assist the decision-making process in healthcare". To address this problem the researcher has narrowed an investigation focusing on a cardiac surgery unit. This research used the cardiac surgery unit at the Prince Charles Hospital (TPCH) as the case study. The cardiac surgery unit at TPCH uses a stand-alone database of patient clinical data, which supports clinical audit, service management and research functions. However, much of the time, the interaction between the cardiac surgery unit information system with other units is minimal. There is a limited and basic two-way interaction with other clinical and administrative databases at TPCH which support decision-making processes. The aims of this research are to investigate what decision-making issues are faced by the healthcare professionals with the current information systems and how decision-making might be improved within this healthcare setting by implementing an aligned data warehouse model or models. As a part of the research the researcher will propose and develop a suitable data warehouse prototype based on the cardiac surgery unit needs and integrating the Intensive Care Unit database, Clinical Costing unit database (Transition II) and Quality and Safety unit database [electronic discharge summary (e-DS)]. The goal is to improve the current decision-making processes. The main objectives of this research are to improve access to integrated clinical and financial data, providing potentially better information for decision-making for both improved from the questionnaire and by referring to the literature, the results indicate a centralised data warehouse model for the cardiac surgery unit at this stage. A centralised data warehouse model addresses current needs and can also be upgraded to an enterprise wide warehouse model or federated data warehouse model as discussed in the many consulted publications. The data warehouse prototype was able to be developed using SAS enterprise data integration studio 4.2 and the data was analysed using SAS enterprise edition 4.3. In the final stage, the data warehouse prototype was evaluated by collecting feedback from the end users. This was achieved by using output created from the data warehouse prototype as examples of the data desired and possible in a data warehouse environment. According to the feedback collected from the end users, implementation of a data warehouse was seen to be a useful tool to inform management options, provide a more complete representation of factors related to a decision scenario and potentially reduce information product development time. However, there are many constraints exist in this research. For example the technical issues such as data incompatibilities, integration of the cardiac surgery database and e-DS database servers and also, Queensland Health information restrictions (Queensland Health information related policies, patient data confidentiality and ethics requirements), limited availability of support from IT technical staff and time restrictions. These factors have influenced the process for the warehouse model development, necessitating an incremental approach. This highlights the presence of many practical barriers to data warehousing and integration at the clinical service level. Limitations included the use of a small convenience sample of survey respondents, and a single site case report study design. As mentioned previously, the proposed data warehouse is a prototype and was developed using only four database repositories. Despite this constraint, the research demonstrates that by implementing a data warehouse at the service level, decision-making is supported and data quality issues related to access and availability can be reduced, providing many benefits. Output reports produced from the data warehouse prototype demonstrated usefulness for the improvement of decision-making in the management of clinical services, and quality and safety monitoring for better clinical care. However, in the future, the centralised model selected can be upgraded to an enterprise wide architecture by integrating with additional hospital units’ databases.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
The literature supporting the notion that active, student-centered learning is superior to passive, teacher-centered instruction is encyclopedic (Bonwell & Eison, 1991; Bruning, Schraw, & Ronning, 1999; Haile, 1997a, 1997b, 1998; Johnson, Johnson, & Smith, 1999). Previous action research demonstrated that introducing a learning activity in class improved the learning outcomes of students (Mejias, 2010). People acquire knowledge and skills through practice and reflection, not by watching and listening to others telling them how to do something. In this context, this project aims to find more insights about the level of interactivity in the curriculum a class should have and its alignment with assessment so the intended learning outcomes (ILOs) are achieved. In this project, interactivity is implemented in the form of problem- based learning (PBL). I present the argument that a more continuous formative feedback when implemented with the correct amount of PBL stimulates student engagement bringing enormous benefits to student learning. Different levels of practical work (PBL) were implemented together with two different assessment approaches in two subjects. The outcomes were measured using qualitative and quantitative data to evaluate the levels of student engagement and satisfaction in the terms of ILOs.
Resumo:
Objectives To evaluate differences among patients with different clinical features of ALS, we used our Bayesian method of motor unit number estimation (MUNE). Methods We performed serial MUNE studies on 42 subjects who fulfilled the diagnostic criteria for ALS during the course of their illness. Subjects were classified into three subgroups according to whether they had typical ALS (with upper and lower motor neurone signs) or had predominantly upper motor neurone weakness with only minor LMN signs, or predominantly lower motor neurone weakness with only minor UMN signs. In all subjects we calculated the half life of MUs, defined as the expected time for the number of MUs to halve, in one or more of the abductor digiti minimi (ADM), abductor pollicis brevis (APB) and extensor digitorum brevis (EDB) muscles. Results The mean half life of MUs was less in subjects who had typical ALS with both upper and lower motor neurone signs than in those with predominantly upper motor neurone weakness or predominantly lower motor neurone weakness. In 18 subjects we analysed the estimated size of the MUs and demonstrated the appearance of large MUs in subjects with upper or lower motor neurone predominant weakness. We found that the appearance of large MUs was correlated with the half life of MUs. Conclusions Patients with different clinical features of ALS have different rates of loss and different sizes of MUs. Significance: These findings could indicate differences in disease pathogenesis.
Resumo:
Listening is the basic and complementary skill in second language learning. The term listening is used in language teaching to refer to a complex process that allows us to understand spoken language. Listening, the most widely used language skill, is often used in conjunction with the other skills of speaking, reading and writing. Listening is not only a skill area in primary language performance (L1), but is also a critical means of acquiring a second language (L2). Listening is the channel in which we process language in real time – employing pacing, units of encoding and decoding (the 2 processes are central to interpretation and meaning making) and pausing (allows for reflection) that are unique to spoken language. Despite the wide range of areas investigated in listening strategies during training, there is a lack of research looking specifically at how effectively L1 listening strategy training may transfer to L2. To investigate the development of any such transfer patterns the instructional design and implementation of listening strategy of L1 will be critical.
Resumo:
Since the 1980s, higher education in Australia has undergone significant change which has led to the belief that universities should cultivate students’ generic skills and attributes. For example, Achieving Quality states that generic skills ‘should represent the central achievements of higher education as a process’ (Higher Education Council, 1992, p 20). The CALD Standards for Australian Law Schools also recognise that tertiary curricula should ‘seek to develop knowledge, understanding, skills, and values’ (Council of Australian Law Deans, 2009, [2.3]. See also AQF Council, 2010, pp 32-5, 40-2; AQF Council, 2011, p 45-50). This more instrumentalist view of education is similarly exhibited by students (Saulwick and Muller, 2006, pp 7, 34). No longer does the modern graduate expect their university degree to equip them solely with the content knowledge of their discipline, but also with the skills and attributes relevant to their career and prospective employment.
Resumo:
ILLITERACY is now increasingly recognised as a serious social problem. UNESCO defines literacy in the following way :- "A person is literate when he has acquired the essential knowledge skills that enable him to engage in all those activities in which literacy is required for effective functioning in his group and community" This is in fact seeing the problem in terms of functional literacy. As the demands of an increasingly industrial society grow, more and more people who are functionally illiterate are appearing. Many do not have the functional skills required to enable them to apply for a job. This inability to obtain work is common among clients of the probation service. Literacy has become so important in our society, that to be unable to read and write causes great feeling of isolation, of being different and inferior, which often leads the illiterate to join a group where this deficiency is unknown and where he can gain some status. This is often a delinquent group.
Resumo:
This paper proposes a new approach for state estimation of angles and frequencies of equivalent areas in large power systems with synchronized phasor measurement units. Defining coherent generators and their correspondent areas, generators are aggregated and system reduction is performed in each area of inter-connected power systems. The structure of the reduced system is obtained based on the characteristics of the reduced linear model and measurement data to form the non-linear model of the reduced system. Then a Kalman estimator is designed for the reduced system to provide an equivalent dynamic system state estimation using the synchronized phasor measurement data. The method is simulated on two test systems to evaluate the feasibility of the proposed method.
Resumo:
The efficacy of existing articular cartilage defect repair strategies are limited. Native cartilage tissue forms via a series of exquisitely orchestrated morphogenic events spanning through gestation into early childhood. However, defect repair must be achieved in a non-ideal microenvironment over an accelerated time-frame compatible with the normal life of an adult patient. Scaffolds formed from decellularized tissues are commonly utilized to enable the rapid and accurate repair of tissues such as skin, bladder and heart valves. The intact extracellular matrix remaining following the decellularization of these relatively low-matrix-density tissues is able to rapidly and accurately guide host cell repopulation. By contrast, the extraordinary density of cartilage matrix limits both the initial decellularization of donor material as well as its subsequent repopulation. Repopulation of donor cartilage matrix is generally limited to the periphery, with repopulation of lacunae deeper within the matrix mass being highly inefficient. Herein, we review the relevant literature and discuss the trend toward the use of decellularized donor cartilage matrix of microscopic dimensions. We show that 2-µm microparticles of donor matrix are rapidly integrate with articular chondrocytes, forming a robust cartilage-like composites with enhanced chondrogenic gene expression. Strategies for the clinical application of donor matrix microparticles in cartilage defect repair are discussed.