984 resultados para Base Sequence
Resumo:
Graft-versus-host disease (GVHD) is the main complication after allogeneic bone marrow transplantation. Although the tissue damage and subsequent patient mortality are clearly dependent on T lymphocytes present in the grafted inoculum, the lethal effector molecules are unknown. Here, we show that acute lethal GVHD, induced by the transfer of splenocytes from C57BL/6 mice into sensitive BALB/c recipients, is dependent on both perforin and Fas ligand (FasL)-mediated lytic pathways. When spleen cells from mutant mice lacking both effector molecules were transferred to sublethally irradiated allogeneic recipients, mice survived. Delayed mortality was observed with grafted cells deficient in only one lytic mediator. In contrast, protection from lethal acute GVHD in resistant mice was exclusively perforin dependent. Perforin-FasL-deficient T cells failed to lyse most target cells in vitro. However, they still efficiently killed tumor necrosis factor alpha-sensitive fibroblasts, demonstrating that cytotoxic T cells possess a third lytic pathway.
Resumo:
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5' regulatory sequence variation in the corresponding genes is indeed increased. However, approximately 42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.
Resumo:
In many gamma-proteobacteria, the conserved GacS/GacA (BarA/UvrY) two-component system positively controls the expression of one to five genes specifying small RNAs (sRNAs) that are characterized by repeated unpaired GGA motifs but otherwise appear to belong to several independent families. The GGA motifs are essential for binding small, dimeric RNA-binding proteins of a single conserved family designated RsmA (CsrA). These proteins, which also occur in bacterial species outside the gamma-proteobacteria, act as translational repressors of certain mRNAs when these contain an RsmA/CsrA binding site at or near the Shine-Dalgarno sequence plus additional binding sites located in the 5' untranslated leader mRNA. Recent structural data have established that the RsmA-like protein RsmE of Pseudomonas fluorescens makes specific contacts with an RNA consensus sequence 5'-(A)/(U)CANGGANG(U)/(A)-3' (where N is any nucleotide). Interaction with an RsmA/CsrA protein promotes the formation of a short stem supporting an ANGGAN loop. This conformation hinders access of 30S ribosomal subunits and hence translation initiation. The output of the Gac/Rsm cascade varies widely in different bacterial species and typically involves management of carbon storage and expression of virulence or biocontrol factors. Unidentified signal molecules co-ordinate the activity of the Gac/Rsm cascade in a cell population density-dependent manner.
Resumo:
Members of the human APOBEC3 family of editing enzymes can inhibit various mobile genetic elements. APOBEC3A (A3A) can block the retrotransposon LINE-1 and the parvovirus adeno-associated virus type 2 (AAV-2) but does not inhibit retroviruses. In contrast, APOBEC3G (A3G) can block retroviruses but has only limited effects on AAV-2 or LINE-1. What dictates this differential target specificity remains largely undefined. Here, we modeled the structure of A3A based on its homology with the C-terminal domain of A3G and further compared the sequence of human A3A to those of 11 nonhuman primate orthologues. We then used these data to perform a mutational analysis of A3A, examining its ability to restrict LINE-1, AAV-2, and foreign plasmid DNA and to edit a single-stranded DNA substrate. The results revealed an essential functional role for the predicted single-stranded DNA-docking groove located around the A3A catalytic site. Within this region, amino acid differences between A3A and A3G are predicted to affect the shape of the polynucleotide-binding groove. Correspondingly, transferring some of these A3A residues to A3G endows the latter protein with the ability to block LINE-1 and AAV-2. These results suggest that the target specificity of APOBEC3 family members is partly defined by structural features influencing their interaction with polynucleotide substrates.
Resumo:
Streptococcus gordonii alpha-phosphoglucomutase, which converts glucose 6-phosphate to glucose 1-phosphate, is encoded by pgm. The pgm transcript is monocistronic and is initiated from a sigma(A)-like promoter. Mutants with a gene disruption in pgm exhibited an altered cell wall muropeptide pattern and a lower teichoic acid content, and had reduced fitness both in vitro and in vivo. In vitro, the reduced fitness included reduced growth, reduced viability in the stationary phase and increased autolytic activity. In vivo, the pgm-deficient strain had a lower virulence in a rat model of experimental endocarditis.
Resumo:
Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family, designated BAFF (for B cell activating factor belonging to the TNF family), which is expressed by T cells and dendritic cells. Human BAFF was mapped to chromosome 13q32-34. Membrane-bound BAFF was processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. The expression of BAFF receptor appeared to be restricted to B cells. Both membrane-bound and soluble BAFF induced proliferation of anti-immunoglobulin M-stimulated peripheral blood B lymphocytes. Moreover, increased amounts of immunoglobulins were found in supernatants of germinal center-like B cells costimulated with BAFF. These results suggest that BAFF plays an important role as costimulator of B cell proliferation and function.
Resumo:
Vitellogenin genes are expressed specifically in the liver of female oviparous vertebrates under the strict control of estrogen. To explain this tissue-specific expression, we performed a detailed analysis of the Xenopus laevis vitellogenin gene B1 promoter by DNase I footprinting and gel mobility-shift assays. We characterized five binding sites for the ubiquitous factor CTF/NF-I. Two of these sites are close to the TATA-box, whereas the others are located on both sides of the estrogen responsive unit formed by two imperfect estrogen response elements. Moreover two liver-enriched factors, C/EBP and HNF3, were found to interact with multiple closely spaced proximal promoter elements in the first 100 base pairs upstream of the TATA-box. To confirm the physiological significance of this in vitro analysis, in vivo DNase I footprinting experiments were carried out using the ligation-mediated polymerase chain reaction technique. The various cis-elements characterized in vitro as binding sites for known transcription factors and more particularly for liver-enriched transcription factors are efficiently recognized in vivo as well, suggesting that they play an important role in the control of the liver-specific vitellogenin gene B1 expression.
Resumo:
Injection of extracts from Xenopus liver nuclei that are enriched 2000 times in estradiol receptor into Xenopus oocytes induces transcription of the silent vitellogenin locus, which is activated in liver by estradiol, but not of the albumin locus, which is active in liver but suppressed by high levels of estradiol. Transcription initiates within the 5'-end region of the gene we have studied and probably continues into the 3' third. The activation seems to be very efficient, but most of the primary transcripts are probably rapidly and inaccurately processed. New proteins are also made and secreted by the oocytes.
Resumo:
Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5' regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in beta-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5' regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting beta cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-beta and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the human IB1 gene.
Resumo:
Nocturnin is a circadian clock-regulated deadenylase thought to control mRNA expression post-transcriptionally through poly(A) tail removal. The expression of Nocturnin is robustly rhythmic in liver at both the mRNA and protein levels, and mice lacking Nocturnin are resistant to diet-induced obesity and hepatic steatosis. Here we report that Nocturnin expression is regulated by microRNA-122 (miR-122), a liver specific miRNA. We found that the 3'-untranslated region (3'-UTR) of Nocturnin mRNA harbors one putative recognition site for miR-122, and this site is conserved among mammals. Using a luciferase reporter construct with wild-type or mutant Nocturnin 3'-UTR sequence, we demonstrated that overexpression of miR-122 can down-regulate luciferase activity levels and that this effect is dependent on the presence of the putative miR-122 recognition site. Additionally, the use of an antisense oligonucleotide to knock down miR-122 in vivo resulted in significant up-regulation of both Nocturnin mRNA and protein expression in mouse liver during the night, resulting in Nocturnin rhythms with increased amplitude. Together, these data demonstrate that the normal rhythmic profile of Nocturnin expression in liver is shaped in part by miR-122. Previous studies have implicated Nocturnin and miR-122 as important post-transcriptional regulators of both lipid metabolism and circadian clock controlled gene expression in the liver. Therefore, the demonstration that miR-122 plays a role in regulating Nocturnin expression suggests that this may be an important intersection between hepatic metabolic and circadian control.
Resumo:
Three novel members of the Xenopus nuclear hormone receptor superfamily have been cloned. They are related to each other and similar to the group of receptors that includes those for thyroid hormones, retinoids, and vitamin D3. Their transcriptional activity is regulated by agents causing peroxisome proliferation and carcinogenesis in rodent liver. All three Xenopus receptors activate the promoter of the acyl coenzyme A oxidase gene, which encodes the key enzyme of peroxisomal fatty acid beta-oxidation, via a cognate response element that has been identified. Therefore, peroxisome proliferators may exert their hypolipidemic effects through these receptors, which stimulate the peroxisomal degradation of fatty acids. Finally, the multiplicity of these receptors suggests the existence of hitherto unknown cellular signaling pathways for xenobiotics and putative endogenous ligands.
Resumo:
A fast method for the identification of recombinant vaccinia viruses directly from individual plaques is described. Plaques are picked, resuspended in PBS-A and processed for PCR using two 'universal' primers. The amplified sequences are analyzed by agarose gel electrophoresis. This procedure allows discrimination between spontaneously arising TK-negative mutants, which do not carry the inserted gene, and the desired TK-negative recombinants resulting from insertional inactivation of the TK gene.
Resumo:
The human MAGE3 gene is expressed in a significant proportion of tumors of various histological types, but is silent in normal adult tissues other than testis and placenta. Antigens encoded by MAGE3 may therefore be useful targets for specific antitumor immunization. Two antigenic peptides encoded by the MAGE3 gene have been reported previously. One is presented to cytolytic T lymphocytes (CTL) by HLA-A1, the other by HLA-A2 molecules. Here we show that MAGE3 also codes for a peptide that is presented to CTL by HLA-B44. MAGE3 peptides containing the HLA-B44 peptide binding motif were synthesized. Peptide MEVDPIGHLY, which showed the strongest binding to HLA-B44, was used to stimulate blood T lymphocytes from normal HLA-B44 donors. CTL clones were obtained that recognized not only HLA-B44 cells sensitized with the peptide, but also HLA-B44 tumor cell lines expressing MAGE3. The proportion of metastatic melanomas expressing the MAGE3/HLA-B44 antigen should amount to approximately 17% in the Caucasian population, since 24% of individuals carry the HLA-B44 allele and 76% of these tumors express MAGE3.
Resumo:
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.