381 resultados para BUBBLES
Resumo:
La tesi doctoral presentada té com a objectius principals l'estudi de les etapes fonamentals de desintegració i flotació en un procés de destintatge de papers vell de qualitats elevades per a poder millorar l'eficàcia d'aquestes etapes clau. Conté una revisió teòrica completa i molt actualitzada del procés de desintegració i flotació tant a nivell macroscòpic com microscòpic. La metodologia de treball en el laboratori, la posada a punt dels aparells, així com les anàlisis efectuades per a valorar la resposta del procés (anàlisi de blancor, anàlisi d'imatge i anàlisi de la concentració efectiva de tinta residual) estan descrites en el capítol de material i mètodes. La posada en marxa permet obtenir unes primeres conclusions respecte la necessitat de treballar amb una matèria primera homogènia i respecte la no significació de la temperatura de desintegració dins l'interval de treball permès al laboratori (20-50°C). L'anàlisi de les variables mecàniques de desintegració: consistència de desintegració (c), velocitat d'agitació en la desintegració (N) i temps de desintegració (t), permet de discernir que la consistència de desintegració és una variable fonamental. El valor de consistència igual al 10% marca el límit d'existència de les forces d'impacte mecànic en la suspensió fibrosa. A consistències superiors, les forces viscoses i d'acceleració dominen l'etapa de desintegració. Existeix una interacció entre la consistència i el temps de desintegració, optimitzant-se aquesta darrera variable en funció del valor de la consistència. La velocitat d'agitació és significativa només per a valors de consistència de desintegració inferiors al 10%. En aquests casos, incrementar el valor de N de 800 a 1400 rpm representa una disminució de 14 punts en el factor de destintabilitat. L'anàlisi de les variables químiques de desintegració: concentració de silicat sòdic (% Na2SiO3), peròxid d'hidrogen (% H2O2) i hidròxid sòdic (% Na2OH), proporciona resultats força significatius. El silicat sòdic presenta un efecte altament dispersant corroborat per les corbes de distribució dels diàmetres de partícula de tinta obtingudes mitjançant anàlisi d'imatges. L'hidròxid sòdic també presenta un efecte dispersant tot i que no és tant important com el del silicat sòdic. Aquests efectes dispersants són deguts principalment a l'increment de les repulsions electrostàtiques que aporten a la suspensió fibrosa aquests reactius químics fent disminuir l'eficàcia d'eliminació de l'etapa de flotació. El peròxid d'hidrogen utilitzat generalment com agent blanquejant, actua en aquests casos com a neutralitzador dels grups hidroxil provinents tant del silicat sòdic com de l'hidròxid sòdic, disminuint la repulsió electrostàtica dins la suspensió. Amb l'anàlisi de les variables hidrodinàmiques de flotació: consistència de flotació (c), velocitat d'agitació durant la flotació (N) i cabal d'aire aplicat (q), s'aconsegueix la seva optimització dins el rang de treball permès al laboratori. Valors elevats tant de la velocitat d'agitació com del cabal d'aire aplicat durant la flotació permeten eliminar majors quantitats de tinta. La consistència de flotació assoleix valors òptims depenent de les condicions de flux dins la cel·la de flotació. Les metodologies d'anàlisi emprades permeten obtenir diferents factors de destintabilitat. Entre aquests factors existeix una correlació important (determinada pels coeficients de correlació de Pearson) que permet assegurar la utilització de la blancor com a paràmetre fonamental en l'anàlisi del destintatge de papers vells, sempre i quan es complementi amb anàlisis d'imatge o bé amb anàlisi de la concentració efectiva de tinta residual. S'aconsegueixen expressions empíriques tipus exponencial que relacionen aquests factors de destintabilitat amb les variables experimentals. L' estudi de les cinètiques de flotació permet calcular les constants cinètiques (kBlancor, kERIC, kSupimp) en funció de les variables experimentals, obtenint un model empíric de flotació que relacionant-lo amb els paràmetres microscòpics que afecten realment l'eliminació de partícules de tinta, deriva en un model fonamental molt més difícil d'interpretar. Mitjançant l'estudi d'aquestes cinètiques separades per classes, també s'aconsegueix determinar que l'eficàcia d'eliminació de partícules de tinta és màxima si el seu diàmetre equivalent és superior a 50 μm. Les partícules amb diàmetres equivalents inferiors a 15 μm no són eliminades en les condicions de flotació analitzades. Es pot dir que és físicament impossible eliminar partícules de tinta de diàmetres molt diferents amb la mateixa eficiència i sota les mateixes condicions de treball. El rendiment del procés analitzat en funció de l'eliminació de sòlids per l'etapa de flotació no ha presentat relacions significatives amb cap de les variables experimentals analitzades. Únicament es pot concloure que addicionar quantitats elevades de silicat sòdic provoca una disminució tant de sòlids com de matèria inorgànica presents en les escumes de flotació.
Resumo:
Foams are cellular structures, produced by gas bubbles formed during the polyurethane polymerization mixture. Flexible PU foams meet the following two criteria: have a limited resistance to an applied load, being both permeable to air and reversibly deformable. There are two main types of flexible foams, hot and cold cure foams differing in composition and processing temperatures. The hot cure foams are widely applied and represent the main composition of actual foams, while cold cure foams present several processing and property advantages, e.g, faster demoulding time, better humid aging properties and more versatility, as hardness variation with index changes are greater than with hot cure foams. The processing of cold cure foams also is attractive due to the low energy consumption (mould temperature from 30 degrees to 65 degrees C) comparatively to hot cure foams (mould temperature from 30 degrees to 250 degrees C). Another advantage is the high variety of soft materials for low temperature processing moulds. Cold cure foams are diphenylmethane diisocyanate (MDI) based while hot cure foams are toluene diisocyanate (TDI) based. This study is concerned with Viscoelastic flexible foams MDI based for medical applications. Differential Scanning Calorimetry (DSC) was used to characterize the cure kinetics and Dynamical Mechanical Analisys to collect mechanical data. The data obtained from these two experimental procedures were analyzed and associated to establish processing/properties/operation conditions relationships. These maps for the selection of optimized processing/properties/operation conditions are important to achieve better final part properties at lower costs and lead times.
Resumo:
New data show that island arc rocks have (Pb-210/Ra-226)(o) ratios which range from as low as 0.24 up to 2.88. In contrast, (Ra-22S/Th-232) appears always within error of I suggesting that the large Ra-226-excesses observed in arc rocks were generated more than 30 years ago. This places a maximum estimate on melt ascent velocities of around 4000 m/year and provides further confidence that the Ra-226 excesses reflect deep (source) processes rather than shallow level alteration or seawater contamination. Conversely, partial melting must have occurred more than 30 years prior to eruption. The Pb-210 deficits are most readily explained by protracted magma degassing. Using published numerical models, the data suggest that degassing occurred continuously for periods up to several decades just prior to eruption but no link with eruption periodicity was found. Longer periods are required if degassing is discontinuous, less than 100% efficient or if magma is recharged or stored after degassing. The long durations suggest much of this degassing occurs at depth with implications for the formation of hydrothermal and copper-porphyry systems. A suite of lavas erupted in 1985-1986 from Sangeang Api volcano in the Sunda arc are characterised by deficits of Pb-210 relative to Ra-226 from which 6-8 years of continuous Rn-222 degassing would be inferred from recent numerical models. These data also form a linear (Pb-210)/Pb-(Ra-226)/Pb array which might be interpreted as a 71-year isochron. However, the array passes through the origin suggesting displacement downwards from the equiline in response to degassing and so the slope of the array is inferred not to have any age significance. Simple modelling shows that the range of (Ra-226)/Pb ratios requires thousands of years to develop consistent with differentiation occurring in response to cooling at the base of the crust. Thus, degassing post-dated, and was not responsible for magma differentiation. The formation, migration and extraction of gas bubbles must be extremely efficient in mafic magma whereas the higher viscosity of more siliceous magmas retards the process and can lead to Pb-210 excesses. A possible negative correlation between (Pb-210/Ra-226)(o) and SO2 emission rate requires further testing but may have implications for future eruptions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
New data show that island arc rocks have (Pb-210/Ra-226)(o) ratios which range from as low as 0.24 up to 2.88. In contrast, (Ra-22S/Th-232) appears always within error of I suggesting that the large Ra-226-excesses observed in arc rocks were generated more than 30 years ago. This places a maximum estimate on melt ascent velocities of around 4000 m/year and provides further confidence that the Ra-226 excesses reflect deep (source) processes rather than shallow level alteration or seawater contamination. Conversely, partial melting must have occurred more than 30 years prior to eruption. The Pb-210 deficits are most readily explained by protracted magma degassing. Using published numerical models, the data suggest that degassing occurred continuously for periods up to several decades just prior to eruption but no link with eruption periodicity was found. Longer periods are required if degassing is discontinuous, less than 100% efficient or if magma is recharged or stored after degassing. The long durations suggest much of this degassing occurs at depth with implications for the formation of hydrothermal and copper-porphyry systems. A suite of lavas erupted in 1985-1986 from Sangeang Api volcano in the Sunda arc are characterised by deficits of Pb-210 relative to Ra-226 from which 6-8 years of continuous Rn-222 degassing would be inferred from recent numerical models. These data also form a linear (Pb-210)/Pb-(Ra-226)/Pb array which might be interpreted as a 71-year isochron. However, the array passes through the origin suggesting displacement downwards from the equiline in response to degassing and so the slope of the array is inferred not to have any age significance. Simple modelling shows that the range of (Ra-226)/Pb ratios requires thousands of years to develop consistent with differentiation occurring in response to cooling at the base of the crust. Thus, degassing post-dated, and was not responsible for magma differentiation. The formation, migration and extraction of gas bubbles must be extremely efficient in mafic magma whereas the higher viscosity of more siliceous magmas retards the process and can lead to Pb-210 excesses. A possible negative correlation between (Pb-210/Ra-226)(o) and SO2 emission rate requires further testing but may have implications for future eruptions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Crumpets are made by heating fermented batter on a hot plate at around 230°C. The characteristic structure dominated by vertical pores develops rapidly: structure has developed throughout around 75% of the product height within 30s, which is far faster than might be expected from transient heat conduction through the batter. Cooking is complete within around 3 min. Image analysis based on results from X-ray tomography shows that the voidage fraction is approximately constant and that there is continual coalescence between the larger pores throughout the product although there is also a steady level of small bubbles trapped within the solidified batter. We report here experimental studies which shed light on some of the mechanisms responsible for this structure, together with some models of key phenomena.Three aspects are discussed here: the role of gas (carbon dioxide and nitrogen) nuclei in initiating structure development; convective heat transfer inside the developing pores; and the kinetics of setting the batter into an elastic solid structure. It is shown conclusively that the small bubbles of carbon dioxide resulting from the fermentation stage play a crucial role as nuclei for pore development: without these nuclei, the result is not a porous structure, but rather a solid, elastic, inedible, gelatinized product. These nuclei are also responsible for the tiny bubbles which are set in the final product. The nuclei form the source of the dominant pore structure which is largely driven by the, initially explosive, release of water vapour from the batter together with the desorption of dissolved carbon dioxide. It is argued that the rapid evaporation, transport and condensation of steam within the growing pores provides an important mechanism, as in a heat pipe, for rapid heat transfer, and models for this process are developed and tested. The setting of the continuous batter phase is essential for final product quality: studies using differential scanning calorimetry and on the kinetics of change in the visco-elastic properties of the batter suggest that this process is driven by the kinetics of gelatinization. Unlike many thermally driven food processes the rates of heating are such that gelatinization kinetics cannot be neglected. The implications of these results for modelling and for the development of novel structures are discussed.
Resumo:
Time dependent gas hold-up generated in the 0.3 and 0.6 m diameter vessels using high viscosity castor oil and carboxy methyl cellulose (CMC) solution was compared on the basis of impeller speed (N) and gas velocity (V-G). Two types of hold-up were distinguished-the hold-up due to tiny bubbles (epsilon(ft)) and total hold-up (epsilon(f)), which included large and tiny bubbles. It was noted that vessel diameter (i.e. the scale of operation) significantly influences (i) the trends and the values of epsilon(f) and epsilon(ft), and (ii) the values of tau (a constant reflecting the time dependency of hold-up). The results showed that a scale independent correlation for gas hold-up of the form epsilon(f) or epsilon(ft) = A(N or P-G/V)(a) (V-G)(b), where "a" and "b" are positive constants is not appropriate for viscous liquids. This warrants further investigations into the effect of vessel diameter on gas hold-up in impeller agitated high viscosity liquids (mu or mu(a) > 0.4 Pa s). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Commercially available UHT cream was tempered at 4 degrees C for 24 h and whipped for different times: 3. 6. 9 and 12 nun. The following properties of cream were measured: rheological and interfacial properties. overrun and size distribution of air bubbles. The whipping process changes the properties of cream, which exhibits viscoelastic behaviour with a high influence of elastic component. The air bubbles incorporated during the process result in forming stronger foam containing smaller bubbles. and also give a higher overrun. These changes are observed around 9 min of whipping. when the amount of air is sufficient to create a stable structure. Further whipping reduces the overrun and the foam partly collapses: this may be caused by aggregation of fat droplets. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Bubble inclusion is one of the fastest growing operations practiced in the food industry. A variety of aerated foods is currently available in supermarkets, and newer products are emerging all the time. This paper aims to combine knowledge on chocolate aeration with studies performed on bubble formation and dispersion characteristics. More specifically, we have investigated bubble formation induced by applying vacuum. Experimental methods to determine gas hold-up (volume fraction of air), bubble section distributions along specific planes, and chocolate rheological properties are presented. This study concludes that decreasing pressures elevate gas hold-up values due to an increase in the number of bubble nuclei being formed and release of a greater volume of dissolved gases. Furthermore, bubbles are observed to be larger at lower pressures for a set amount of gas because the internal pressure needs to be in equilibrium with the surrounding pressures. Temperature-induced changes to the properties of the chocolate have less of an effect on bubble formation. On the other hand, when different fats and emulsifiers are added to a standard chocolate recipe, milk fat was found to increase, significantly, the gas hold-up values and the mean bubble-section diameters. It is hypothesized that this behavior is related to the way milk fats, which contain different fatty acids to cocoa butter, crystallize and influence the setting properties of the final product. It is highlighted that apparent viscosity values at low shear rate, as well as setting behavior, play an important role in terms of bubble formation and entrainment.
Resumo:
Bubbles impart a very unique texture, chew, and mouth feel to foods. However, little is known about the relationship between structure of such products and consumer response in terms of mouth-feel and eating experience. The objective of this article is to investigate the sensory properties of 4 types of bubble-containing chocolates, produced by using different gases: carbon dioxide, nitrogen, nitrous oxide, and argon. The structure of these chocolates were characterized in terms of (1) gas hold-up values determined by density measurements and (2) bubble size distribution which was measured by undertaking an image analysis of X-ray microtomograph sections. Bubble size distributions were obtained by measuring bubble volumes after reconstructing 3D images from the tomographic sections. A sensory study was undertaken by a nonexpert panel of 20 panelists and their responses were analyzed using qualitative descriptive analysis (QDA). The results show that chocolates made from the 4 gases could be divided into 2 groups on the basis of bubble volume and gas hold-up: the samples produced using carbon dioxide and nitrous oxide had a distinctly higher gas hold-up containing larger bubbles in comparison with those produced using argon and nitrogen. The sensory study also demonstrated that chocolates made with the latter were perceived to be harder, less aerated, slow to melt in the mouth, and having overall flavor intensity. These products were further found to be creamier than the chocolates made by using carbon dioxide and nitrous oxide; the latter sample also showed a higher intensity of cocoa flavor.
Resumo:
We have calculated the equilibrium shape of the axially symmetric Plateau border along which a spherical bubble contacts a flat wall, by analytically integrating Laplace’s equation in the presence of gravity, in the limit of small Plateau border sizes. This method has the advantage that it provides closed-form expressions for the positions and orientations of the Plateau border surfaces. Results are in very good overall agreement with those obtained from a numerical solution procedure, and are consistent with experimental data. In particular we find that the effect of gravity on Plateau border shape is relatively small for typical bubble sizes, leading to a widening of the Plateau border for sessile bubbles and to a narrowing for pendant bubbles. The contact angle of the bubble is found to depend even more weakly on gravity.
Resumo:
One reason for the recent asset price bubbles in many developed countries could be regulatory capital arbitrage. Regulatory and legal changes can help traditional banks to move their assets off their balance sheets into the lightly regulated shadows and thus enable regulatory arbitrage through the securitized sector. This paper adopts a global vector autoregression (GVAR) methodology to assess the effects of regulatory capital arbitrage on equity prices, house prices and economic activity across 11 OECD countries/ regions. A counterfactual experiment disentangles the effects of regulatory arbitrage following a change in the net capital rule for investment banks in April 2004 and the adoption of the Basel II Accord in June 2004. The results provide evidence for the existence of an international finance multiplier, with about half of the countries overshooting U.S. impulse responses. The counterfactual shows that regulatory arbitrage via the U.S. securitized sector may enhance the cross-country reallocation of capital from housing markets towards equity markets.
Resumo:
In this paper we determine whether speculative bubbles in one region in the United States can lead bubbles to form in others. We first apply a regime-switching model to determine whether speculative bubbles existed in the U.S. regional residential real estate markets. Our findings suggest that the housing markets in five of the nine census divisions investigated were characterized by speculative bubbles. We then examine the extent to which bubbles spill over between neighboring and more distant regions, finding that the transmission of speculative bubbles and nonfundamentals between regions is multidirectional and does not depend on contiguity or distance
Resumo:
This paper investigates the behavior of residential property and examines the linkages between house price dynamics and bank herding behavior. The analysis presents evidence that irrational behaviour may have played a significant role in several countries, including; United Kingdom, Spain, Denmark, Sweden and Ireland. In addition, we also provide evidence indicative of herding behaviour in the European residential mortgage loan market. Granger Causality tests indicate that non-fundamentally justified prices dynamics contributed to herding by lenders and that this behaviour was a response by the banks as a group to common information on residential property assets. In contrast, in Germany, Portugal and Austria, residential property prices were largely explained by fundamentals. Furthermore, these countries show no evidence of either irrational price bubbles or herd behaviour in the mortgage market. Granger Causality tests indicate that both variables are independent.
Resumo:
Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser-induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences the uncertainty in determining the formation temperature is provided. We demonstrate that the nominal homogenisation temperature of a single inclusion can be determined with an accuracy of ±0.25 °C, if the volume of the inclusion is larger than 105 μm3. With this method, we could measure in a proof-of-principle investigation that the formation temperature of 10–20 yr old inclusions in a stalagmite taken from the Milandre cave is 9.87 ± 0.80 °C, while the mean annual surface temperature, that in the case of the Milandre cave correlates well with the cave temperature, was 9.6 ± 0.15 °C, calculated from actual measurements at that time, showing a very good agreement. Formation temperatures of inclusions formed during the last 450 yr are found in a temperature range between 8.4 and 9.6 °C, which corresponds to the calculated average surface temperature. Paleotemperatures can thus be determined within ±1.0 °C.