963 resultados para BRAIN-REGIONS
Resumo:
We detected and mapped a dynamically spreading wave of gray matter loss in the brains of patients with Alzheimer's disease (AD). The loss pattern was visualized in four dimensions as it spread over time from temporal and limbic cortices into frontal and occipital brain regions, sparing sensorimotor cortices. The shifting deficits were asymmetric (left hemisphere >right hemisphere) and correlated with progressively declining cognitive status ( p 15% loss). The maps distinguished different phases of AD and differentiated AD from normal aging. Local gray matter loss rates (5.3 +/- 2.3% per year in AD v 0.9 +/- 0.9% per year in controls) were faster in the left hemisphere ( p < 0.029) than the right. Transient barriers to disease progression appeared at limbic/frontal boundaries. This degenerative sequence, observed in vivo as it developed, provides the first quantitative, dynamic visualization of cortical atrophic rates in normal elderly populations and in those with dementia.
Resumo:
Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC)-amygdala (AMY)-medial prefrontal cortex (mPFC) network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC respectively), basolateral amygdala (BLA) and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Ressonância Magnética
Resumo:
Perceber a rede estrutural formada pelos neurónios no cérebro a nível da macro escala é um desafio atual na área das neurociências. Neste estudo analisou-se a conectividade estrutural do cérebro em 22 indivíduos saudáveis e em dois doentes com epilepsia pós-traumática. Avaliaram-se as diferenças entre estes dois grupos. Também se pesquisaram diferenças a nível do género e idade no grupo de indivíduos saudáveis e os que têm valores médios mais elevados nas métricas de caracterização da rede. Para tal, desenvolveu-se um protocolo de análise recorrendo a diversos softwares especializados e usaram-se métricas da Teoria dos Grafos para a caracterização da conectividade estrutural entre 118 regiões encefálicas distintas. Dentro do grupo dos indivíduos saudáveis concluiu-se que os homens, no geral, são os que têm média mais alta para as métricas de caracterização da rede estrutural. Contudo, não se observaram diferenças significativas em relação ao género nas métricas de caracterização global do cérebro. Relativamente à idade, esta correlaciona-se negativamente, no geral, com as métricas de caracterização da rede estrutural. As regiões onde se observaram as diferenças mais importantes entre indivíduos saudáveis e doentes são: o sulco rolândico, o hipocampo, o pré-cuneus, o tálamo e o cerebelo bilateralmente. Estas diferenças são consistentes com as imagens radiológicas dos doentes e com a literatura estudada sobre a epilepsia pós-traumática. Preveem-se desenvolvimentos para o estudo da conectividade estrutural do cérebro humano, uma vez que a sua potencialidade pode ser combinada com outros métodos de modo a caracterizar as alterações dos circuitos cerebrais.
Resumo:
The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.
Resumo:
Objective: The Panayiotopoulos type of idiopathic occipital epilepsy has peculiar and easily recognizable ictal symptoms, which are associated with complex and variable spike activity over the posterior scalp areas. These characteristics of spikes have prevented localization of the particular brain regions originating clinical manifestations. We studied spike activity in this epilepsy to determine their brain generators. Methods: The EEG of 5 patients (ages 7–9) was recorded, spikes were submitted to blind decomposition in independent components (ICs) and those to source analysis (sLORETA), revealing the spike generators. Coherence analysis evaluated the dynamics of the components. Results: Several ICs were recovered for posterior spikes in contrast to central spikes which originated a single one. Coherence analysis supports a model with epileptic activity originating near lateral occipital area and spreading to cortical temporal or parietal areas. Conclusions: Posterior spikes demonstrate rapid spread of epileptic activity to nearby lobes, starting in the lateral occipital area. In contrast, central spikes remain localized in the rolandic fissure. Significance: Rapid spread of posterior epileptic activity in the Panayitopoulos type of occipital lobe epilepsy is responsible for the variable and poorly localized spike EEG. The lateral occipital cortex is the primary generator of the epileptic activity.
Resumo:
Schizophrenic patients undergoing proton magnetic resonance spectroscopy show alterations in N-acetyl aspartate levels in several brain regions, indicating neuronal dysfunction. The present review focuses on the main proton magnetic resonance spectroscopy studies in the frontal lobe of schizophrenics. A MEDLINE search, from 1991 to March 2004, was carried out using the key-words spectroscopy and schizophrenia and proton and frontal. In addition, articles cited in the reference list of the studies obtained through MEDLINE were included. As a result, 27 articles were selected. The results were inconsistent, 19 papers reporting changes in the N-acetyl aspartate levels, while 8 reported no change. Methodological analysis led to the conclusion that the discrepancy may be due the following factors: (i) number of participants; (ii) variation in the clinical and demographic characteristics of the groups; (iii) little standardization of the acquisition parameters of spectroscopy. Overall, studies that fulfill strict methodological criteria show N-acetyl aspartate decrease in the frontal lobe of male schizophrenics.
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder-the cerebellum-and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame-6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.
Resumo:
We describe a case of experimentally induced pre-syncope in a healthy young man when exposed to increased inspired CO2 in a background of hypoxia. Acute severe hypoxia (FIO2=0.10) was tolerated, but adding CO2 to the inspirate caused pre-syncope symptoms accompanied by hypotension and large reductions in both mean and diastolic middle cerebral artery velocity, while systolic flow velocity was maintained. The mismatch of cerebral perfusion pressure and vascular tone caused unique retrograde cerebral blood flow at the end of systole and a reduction in cerebral tissue oxygenation. We speculate that this occurrence of pre-syncope was due to hypoxia-induced inhibition of brain regions responsible for compensatory sympathetic activity to relative hypercapnia.
Resumo:
The last several years have seen an increasing number of studies that describe effects of oxytocin and vasopressin on the behavior of animals or humans. Studies in humans have reported behavioral changes and, through fMRI, effects on brain function. These studies are paralleled by a large number of reports, mostly in rodents, that have also demonstrated neuromodulatory effects by oxytocin and vasopressin at the circuit level in specific brain regions. It is the scope of this review to give a summary of the most recent neuromodulatory findings in rodents with the aim of providing a potential neurophysiological basis for their behavioral effects. At the same time, these findings may point to promising areas for further translational research towards human applications.
Resumo:
The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ∼300ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.
Resumo:
To sense myriad environmental odors, animals have evolved multiple, large families of divergent olfactory receptors. How and why distinct receptor repertoires and their associated circuits are functionally and anatomically integrated is essentially unknown. We have addressed these questions through comprehensive comparative analysis of the Drosophila olfactory subsystems that express the ionotropic receptors (IRs) and odorant receptors (ORs). We identify ligands for most IR neuron classes, revealing their specificity for select amines and acids, which complements the broader tuning of ORs for esters and alcohols. IR and OR sensory neurons exhibit glomerular convergence in segregated, although interconnected, zones of the primary olfactory center, but these circuits are extensively interdigitated in higher brain regions. Consistently, behavioral responses to odors arise from an interplay between IR- and OR-dependent pathways. We integrate knowledge on the different phylogenetic and developmental properties of these receptors and circuits to propose models for the functional contributions and evolution of these distinct olfactory subsystems.
Resumo:
Abstract : This thesis investigated the spatio-temporal brain mechanisms of three processes involved in recognizing environmental sounds produced by living (animal vocalisations) and man-made (manufactured) objects: their discrimination, their plasticity, and the involvement of action representations. Results showed rapid brain discrimination between these categories beginning at ~70ms. Then, beginning at ~150ms, effects of plasticity are observed, without any influence of the categories of sounds. Both of these processes of discrimination and repetition priming involved brain structures located in temporal and frontal lobes. Activation of brain areas BA21 and BA22 suggest an access to semantic representations and/or linked to object manipulation. To investigate the involvement of action representations in sound recognition, analyses were restricted to sounds produced by man-made objects. Results suggest an access to representations linked to action functionally related to sound rather than to representations linked to action that produced sound. These effects occurred at ~300ms post-stimulus onset and involved differential activity brain regions attributed to the mirror neuron system. These data are discussed in regard to motor preparation of actions functionally linked to sounds. Collectively these data showed a sequential progression of cerebral activity underlying the recognizing of environmental sounds. The processes occurred firstly in a shared network of brain areas before propagating elsewhere and/or leading to differential activity in these structures. Cerebral responses observed in this work allowed establishing a dynamic model of discrimination of sounds produced by living and man-made objects.