986 resultados para BORATE GLASSES
Resumo:
The temperature dependence of the longitudinal and shear ultrasound wave velocities in (As2S3)1-x(PbS)x glasses has been determined from 77 to 300K using a pulse echo interferometer. Elastic constants of the prepared glasses at room temperature have been computed from the experimental data. Both longitudinal and shear ultrasound wave velocities in these glasses show a linear temperature dependence with a negative temperature coefficient.
Resumo:
It has been possible to identify two critical compositions in the IV-VI chalcogenide glassy system GexSe100-x by the anomalous variations of the high-pressure electrical resistivity behavior. The first critical composition, the chemical threshold, refers to the stoichiometric composition. The second critical composition, identified recently as the mechanical percolation threshold, is connected with the structural rigidity of the material.
Resumo:
Transparent glasses in the system 0.5Li(2)O-0.5K(2)O-2B(2)O(3) (LKBO) were fabricated via the conventional melt quenching technique. Amorphous and glassy nature of the samples was confirmed by X-ray diffraction and differential scanning calorimetry (DSC) respectively. Complex dielectric and impedance studies were conducted on the samples at different temperatures in the 100 Hz-10 MHz frequency range. ac conductivity was calculated from the dielectric data and the conductivity relaxation was found to obey the Jonscher's law. The Nyquist's plots (Z `'(omega) vs. Z'(omega)) showed single suppressed semicircles at all the temperatures under study indicating the non ideal Debye type relaxation process to be active. Activation energies for conduction and relaxation process were calculated using the Arrhenius relation. The UV-visible optical transmission spectra was shown a wide transmission window and calculated optical band gap was found to be 5.67 eV.
Resumo:
An efficient algorithm within the finite deformation framework is developed for finite element implementation of a recently proposed isotropic, Mohr-Coulomb type material model, which captures the elastic-viscoplastic, pressure sensitive and plastically dilatant response of bulk metallic glasses. The constitutive equations are first reformulated and implemented using an implicit numerical integration procedure based on the backward Euler method. The resulting system of nonlinear algebraic equations is solved by the Newton-Raphson procedure. This is achieved by developing the principal space return mapping technique for the present model which involves simultaneous shearing and dilatation on multiple potential slip systems. The complete stress update algorithm is presented and the expressions for viscoplastic consistent tangent moduli are derived. The stress update scheme and the viscoplastic consistent tangent are implemented in the commercial finite element code ABAQUS/Standard. The accuracy and performance of the numerical implementation are verified by considering several benchmark examples, which includes a simulation of multiple shear bands in a 3D prismatic bar under uniaxial compression.
Resumo:
Alkali aluminosilicate glasses prepared by the gel and the melt routes have been investigated by Si-29 and Al-27 MAS NMR spectroscopy. It is found that Al has a tetrahedral coordination in the gel glasses modified with equivalent proportions of alkalis unlike in a pure aluminosilicate glass where Al has both four and six coordinations. Silicon is present as Q4 units in all the 5M2O 5Al2O3 9OSiO2 ( M = Li, Na and K) gel glasses studied whereas it is present in Q2 or Q3 species in the lithium aluminosilicate glasses of compositions 40Li2O x Al2O3 (1-x)SiO2 (1 less-than-or-equal-to x less-than-or-equal-to 15) and xLi2O 10Al2O3 (1-x)SiO2 (20 less-than-or-equal-to x less-than-or-equal-to 40). The combination of Q2 and Q3 is also found in certain sodium aluminosilicate glasses, but they change to Q2 and Q1 as the concentration of SiO2 decreases.
Resumo:
Thermal crystallization studies have been carried out on bulk, semiconducting AsxTe100−x glasses of different compositions using Differential Scanning Caloritmery. AsxTe100−x glasses with x < 40, are found to exhibit one glass transition and one crystallization. On the other hand, glasses with composition 40 less-than-or-equals, slantxless-than-or-equals, slant 50 show one glass transition and two crystallization reactions. It has been found that in glasses with x greater-or-equal, slanted 40, the two crystallization reactions progressively merge with an increase in arsenic concentration. Consequently AsxTe100−x glasses with x greater-or-equal, slanted 50 show only one crystallization. The composition dependence of crystallization temperatures and activation energies for crystallization estimated by Kissinger's method, show marked deviations at a composition x = 40. These observations can be explained in terms of the changes in the local structure of the material with composition.
Resumo:
Differential scanning calorimetry (DSC) can be used for obtaining various non-isothermal properties of glassy materials. The thermal properties of the Si-As-Te glass system are discussed in relation to the interesting information obtained on the local ordering in these glasses.
Resumo:
A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.
Resumo:
The optical bandgap and thermal diffusivity of Si10AsxTe90−x (10 ≤ x ≤ 50) and Si15AsxTe85−x (5 ≤ x ≤ 40) glasses have been measured using the photoacoustic technique. The anomalous behaviour observed in these properties at the mean coordination number left angle bracketrright-pointing angle bracket = 2.60 is interpreted by reference to the formation and development of a layered structure in these glasses.
Resumo:
High pressure electrical resistivity measurements were carried out on GexSe100-x (0 less-than-or-equal-to x less-than-or-equal-to 40) glasses at ambient and low temperatures using the Bridgman anvil system. All the melt quenched glasses show a discontinuous glassy semiconductor to crystalline metal transition at high pressures. The high pressure phases of Ge-Se samples do not correspond to any of the equilibrium phases of the system. Additionally, the variation of transition pressure (P(T)), ambient resistivity (rho0) and the activation energy (DELTAE(t)) with composition, exhibit a change in behaviour at x = 20 and 33. The unusual variations observed in these glasses are discussed in the light of chemical and percolation thresholds occurring in the glassy system.
Resumo:
The local structural order in chalcogenide network glasses is known to change markedly at two critical compositions, namely, the percolation and chemical thresholds. In the AsxTe100-x glassy system, both the thresholds coincide at the composition x = 40 (40 at. % of arsenic). It is demonstrated that the electrical switching fields of As-Te glasses exhibit a distinct change at this composition.