684 resultados para BOAR SPERMATOZOA
Resumo:
We describe the patterns of paternity success from laboratory mating experiments conducted in Antechinus agilis, a small size dimorphic carnivorous marsupial (males are larger than females). A previous study found last-male sperm precedence in this species, but they were unable to sample complete Utters, and did not take male size and relatedness into account. We tested whether last-male sperm precedence regardless of male size still holds for complete litters. We explored the relationship between male mating order, male size, timing of mating and relatedness on paternity success. Females were mated with two males of different size with either the large or the small male first, with 1 day rest between the matings. Matings continued for 6 h. in these controlled conditions male size did not have a strong effect on paternity success, but mating order did. Males mating second sired 69.5% of the offspring. Within first mated males, males that mated closer to ovulation sired more offspring, To a lesser degree, variation appeared also to be caused by differences in genetic compatibility of the female and the male, where high levels of allele-sharing resulted in lower paternity success.
Resumo:
Sperm ultrastructure is examined in representatives of five genera of the nudibranch gastropod family Chromodorididae: (Chromodoris, Hypselodoris, Glossodoris, Risbecia and Pectenodoris) and the results compared with previous work on other gastropods, especially other nudibranchs. As chromodoridid phylogeny is still incompletely understood, this study partly focuses on the search for new and as yet untapped sources of informative characters. Like spermatozoa of most other heterobranch gastropods, those of the Chromodorididae are elongate, complex cells composed of an acrosomal complex (small, rounded acrosomal vesicle, and columnar acrosomal pedestal), a condensed nucleus, sub-nuclear ring, a highly modified mid-piece (axoneme + coarse fibres surrounded by a glycogen-containing, helically-coiled mitochondrial derivative) and terminally a glycogen piece (or homologue thereof). The finely striated acrosomal pedestal is a synapomorphy of all genera examined here, but interestingly also occurs in at least one dorid (Rostanga arbutus). Substantial and potentially taxonomically informative differences were also observed between genera in the morphology of the nucleus, the neck region of the mid-piece, and also the terminal glycogen piece. The subnuclear ring is shown for the first time to be a segmented, rather than a continuous structure; similarly, the annular complex is shown to consist of two structures, the annulus proper and the herein-termed annular accessory body.
Resumo:
Mature euspermatozoan ultrastructure is described for seven species of the rissooidean family Baicaliidae (endemic to Lake Baikal, Russia)-Liobaicalia stiedae, Teratobaikalia ciliata, T. macrostoma, Baicalia carinata, Pseudobaikalia pulla, Maackia bythiniopsis, M. variesculpta, and M. herderiana. For comparison with these species and previously investigated Rissooidea, two species of the Lake Baikal endemic genus Benedictia (B. cf. fragilis and B. baicalensis; Hydrobiidae: Benedictiinae of some authors, Benedictiidae of other authors) in addition to Lithoglyphus naticoides (Hydrobiidae: Lithoglyphinae) and Bythinella austriaca (Hydrobiidae: Bythinellinae) were also investigated. Paraspermatozoa were not observed in any of the species examined, supporting the view that these cells are probably absent in the Rissooidea. In general, the euspermatozoa of all species examined resemble those of many other caenogastropods (basally invaginated acrosomal vesicle, mid-piece with 7-13 helical mitochondria, an annulus, glycogen piece with nine peri-axonemal tracts of granules). However, the presence of a completely flattened acrosomal vesicle and a specialized peri-axonemal membranous sheath (a scroll-like arrangement of 4-6 double membranes) at the termination of the mid-piece, clearly indicates a close relationship between the Baicaliidae and other rissooidean families possessing these features (Bithyniidae, Hydrobiidae, Pyrgulidae, and Stenothyridae). Euspermatozoa of Benedictia, Lithoglyphus, Bythinella, and Pyrgula all have a solid nucleus, which exhibits a short, posterior invagination (housing the centriolar complex and proximal portion of the axoneme). Among the Rissooidea, this form of nucleus is known to occur in the Bithyniidae, Hydrobiidae, Truncatellidae, Pyrgulidae, Iravadiidae, Pomatiopsidae, and Stenothyridae. In contrast, the euspermatozoa of the Baicaliidae all have a long, tubular nucleus, housing not only the centriolar derivative, but also a substantial portion of the axoneme. Among the Rissooidea, a tubular nuclear morphology has previously been seen in the Rissoidae, which could support the view, based on anatomical grounds, that the Baicaliidae may have arisen from a different ancestral source than the Hydrobiidae. However, the two styles of nuclear morphology (short, solid versus long, tubular) occur widely within the Caenogastropoda, and sometimes both within a single family, thereby reducing the phylogenetic importance of nuclear differences within the Rissooidea. More significantly, the occurrence of the highly unusual membranous sheath within the mid-piece region in the Baicaliidae appears to tie this family firmly to the Bithyniidae + Hydrobiidae + Stenothyridae + Pyrgulidae assemblage. Eusperm features of Benedictia spp. strongly resemble those of hydrobiids and bithyniids, and neither support recognition of a distinct family Benedictiidae (at best this is a subfamily of Hydrobiidae) nor any close connection with the hydrobiid subfamily Lithoglyphinae.
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
INTRODUCTION: Prolonged survival of patients under HAART has resulted in new demands for assisted reproductive technologies. HIV serodiscordant couples wish to make use of assisted reproduction techniques in order to avoid viral transmission to the partner or to the newborn. It is therefore essential to test the effectiveness of techniques aimed at reducing HIV and HCV loads in infected semen using molecular biology tests. METHODS: After seminal analysis, semen samples from 20 coinfected patients were submitted to cell fractioning and isolation of motile spermatozoa by density gradient centrifugation and swim-up. HIV and HCV RNA detection tests were performed with RNA obtained from sperm, seminal plasma and total semen. RESULTS: In pre-washing semen, HIV RNA was detected in 100% of total semen samples, whereas HCV RNA was concomitantly amplified in only one specimen. Neither HIV nor HCV were detected either in the swim-up or in the post-washing semen fractions. CONCLUSIONS: Reduction of HIV and/or HCV shedding in semen by density gradient centrifugation followed by swim-up is an efficient method. These findings lead us to believe that, although semen is rarely found to contain HCV, semen processing is highly beneficial for HIV/HCV coinfected individuals.
Resumo:
Males from bilateral crosses between Triatoma sórdida and Triatoma pseudomaculata were unable to give offspring, as shown by subsequent backcrosses (BC) between hybrid males and parental females. This kind of sterility indueed through interspecific hybridization seems to be due to lack of sperm migration from the bursa copulatrix to the spermateca, thus suggesting primarily failure on the part of hybrid males to produce and/or to incorporate male accessory secretions into the spermatophore bulb. Addicional proof that sterility induced in hybrid males is at the sperm level has been afforded by the spermatogenesis herein studied. The anomalous processes like; 1) prophases of spermatogonia with the chromosomes scattered in the cytoplasm, 2) first metaphases with unpaired tetrades, 3) spermatids differing in size and 4) spermatozoa of abnormal shape and generdlly of giant size, can be taken as an indicator of the degree of departure from the normal course of spermatogenesis.
Resumo:
The development of integrated measures which involve sterile mate release to supplement the conventional insecticidal techniques used in controlagainst insects of medical importance, raised the question, whether the vectors of Chagas'disease possess the natural mechanisms by manipulation of which they may be controlled. Results of earlier expenments, that had been published previously, were restricted to fragmentary information that raised various questions, the answer to which became available in the study herein described. Interspecific hybrids were produced from reciprocal crosses between T. pseudomaculata and T. sórdida and from unilateral crosses between female T. pseudomaculata and male. T. infestans. These females mated with males, laid less than the normal complement of eggs, but offspring was relatively abundant. When T. pseudomaculata females were paired with T. brasiliensis males, hybridization was more difficult because few of the females mated and those that did had a strongly reduced fertility. Adults emerged from ali crosses but exhibited sex disproportion, females predominating in all populations but one. The two Rhodnius species tested were also found to cross, but only when female R. prolixus were paired with male R. neglectus. These females laid a relatively high complement o f eggs, had a strongly reduced fertility, but 50% of the fertile eggs developed into vigorous adults, males predominating females. Neither type of hybrid male elicited fertilized eggs from either parental type of female, through their vesicula seminal is were found to be packed with spermatozoa, some normal looking and moving, others underdeveloped and motionless. Although, no artificial insemination was performed, the sperm in itself did not appear to be the prime inducer of sterility. Females paired with these hybrids did mate, sperm was transfered, as evidenced by the discharged spermatophores smeared with sperm, but did notcontain spermatozoa in their spermatecae. The failure of the sperm to migrate to the spermatecae indicate prezygotic pos-copulation incompatibility, thus the hybrid male can't be used to suppress populations. The female hybrids mated with parent males of either species had reduced fertility and ther sons were sterile as were those of their fertile daughters. However, continous backcrossing of the hybrid females and their female progeny to parental males partially restored fertility of the males and increased fertility of females, as scored by egg hatchability. Fertility of hybrid females, measured by the yield of adults capable to reproduce, indicated that the reproductive perfomance decreased when hybrid females and their daughters were backcrossed additional generations to parental males. It is tentatively suggested that hybrid females could be used for suppression if they compete efficiently with wild females.
Resumo:
In the present paper the behavior of the heterochromoso-mes in the course of the meiotic divisions of the spermatocytes in 15 species of Orthoptera belonging to 6 different families was studied. The species treated and their respective chromosome numbers were: Phaneropteridae: Anaulacomera sp. - 1 - 2n = 30 + X, n +15+ X and 15. Anaulacomera sp. - 2 - 2n - 30 + X, n = 15+ X and 15. Stilpnochlora marginella - 2n = 30 + X, n = 15= X and 15. Scudderia sp. - 2n = 30 + X, n = 15+ X and 15. Posldippus citrifolius - 2n = 24 + X, n = 12+X and 12. Acrididae: Osmilia violacea - 2n = 22+X, n = 11 + X and 11. Tropinotus discoideus - 2n = 22+ X, n = 11 + X and 11. Leptysma dorsalis - 2n = 22 + X, n = 11-J-X and 11. Orphulella punctata - 2n = 22-f X, n = 11 + X and 11. Conocephalidae: Conocephalus sp. - 2n = 32 + X, n = 16 + X and 16. Proscopiidae: Cephalocoema zilkari - 2n = 16 + X, n = 8+ X and 8. Tetanorhynchus mendesi - 2n = 16 + X, n = 8+X and 8. Gryliidae: Gryllus assimilis - 2n = 28 + X, n = 14+X and 14. Gryllodes sp. - 2n = 20 + X, n = 10- + and 10. Phalangopsitidae: Endecous cavernicola - 2n = 18 +X, n = 94-X and 9. It was pointed out by the present writer that in the Orthoptera similarly to what he observed in the Hemiptera the heterochromosome in the heterocinetic division shows in the same individual indifferently precession, synchronism or succession. This lack of specificity is therefore pointed here as constituting the rule and not the exception as formerly beleaved by the students of this problem, since it occurs in all the species referred to in the present paper and probably also m those hitherto investigated. The variability in the behavior of the heterochromosome which can have any position with regard to the autosomes even in the same follicle is attributed to the fact that being rather a stationary body it retains in anaphase the place it had in metaphase. When this place is in the equator of the cell the heterochromosome will be left behind as soon as anaphase begins (succession). When, on the contrary, laying out of this plane as generally happens (precession) it will sooner be reached (synchronism) or passed by the autosomes (succession). Due to the less kinetic activity of the heterochromosome it does not orient itself at metaphase remaining where it stands with the kinetochore looking indifferently to any direction. At the end of anaphase and sometimes earlier the heterochromosome begins to show mitotic activities revealed by the division of its body. Then, responding to the influence of the nearer pole it moves to it being enclosed with the autosomes in the nucleus formed there. The position of the heterochromosome in the cell is explained in the following manner: It is well known that the heterochromosome of the Orthoptera is always at the periphery of the nucleus, just beneath the nuclear membrane. This position may be any in regard of the axis of the dividing cell, so that if one of the poles of the spindle comes to coincide with it, the heterochromosome will appear at this pole in the metaphasic figures. If, on the other hand, the angle formed by the axis of the spindle with the ray reaching the heterochromosome increases the latter will appear in planes farther and farther apart from the nearer pole until it finishes by being in the equatorial plane. In this way it is not difficult to understand precession, synchronism or succession. In the species in which the heterochromosome is very large as it generally happens in the Phaneropteridae, the positions corresponding to precession are much more frequent. This is due to the fact that the probabilities for the heterochromosome taking an intermediary position between the equator and the poles at the time the spindle is set up are much greater than otherwise. Moreover, standing always outside the spindle area it searches for a place exactly where this area is larger, that is, in the vicinity of the poles. If it comes to enter the spindle area, what has very little probability, it would be, in virtue of its size, propelled toward the pole by the nearing anaphasic plate. The cases of succession are justly those in which the heterochromosome taking a position parallelly to the spindle axis it can adjust its large body also in the equator or in its proximity. In the species provided with small heterochromosome (Gryllidae, Conocephalidae, Acrididae) succession is found much more frequently because here as in the Hemiptera (PIZA 1945) the heterochromosome can equally take equatorial or subequatorial positions, and, furthermore, when in the spindle area it does offer no sereous obstacle to the passage of the autosomes. The position of the heterochromosome at the periphery of the nucleus at different stages may be as I suppose, at least in part a question of density. The less colourability and the surface irregularities characteristic of this element may well correspond to a less degree of condensation which may influence passive movements. In one of the species studied here (Anaulacomera sp.- 1) included in the Phaneropteridae it was observed that the plasmosome is left motionless in the spindle as the autosomes move toward the poles. It passes to one of the secondary spermatocytes being not included in its nucleus. In the second division it again passes to one of the cells being cast off when the spermatid is being transformed into spermatozoon. Thus it is regularly found among the tails of the spermatozoa in different stages of development. In the opinion of the present writer, at least in some cases, corpuscles described as Golgi body's remanents are nothing more than discarded plasmosomes.
Resumo:
A natural chromosomal race of Tityus babiensis (Scorpiones Buthidae) is described in the present paper. Five males and seven females received from St. Joaquim, State of S. Paulo, gave the following interesting results: All the spermatogonia of the five males were provided with 9 chromosomes of different sizes. All primary spermatocytes showed at metaphase one independent bivalent of normal shape and a complex group formed by 7 chromosomes which have exchanged parts. Some of the chromosomes associated in the complex group, to Judge by their behavior, were composed of fragments of three different chromosomes, being thus paired with three other members of the compound group. The manner in which all the 7 components of the group have paired with each other showed to be very constant. They gave always origin to a double-cross configuration, the longst branch of which being formed by a long chromosome paired with two components of the group and with a third chromosome that did not belong to the group. The chromosomes of the independent bivalent separate regularly, going to different poles. From the 7 elements of the compound group, 4 go to one pole and 3 to the opposite one. Consequently, secondary spermatocytes with 4 and 5 chromosomes are produced. The females, so far as it can be inferred from the study of the follicular cells of the ovariuterus, have 10 chromosomes. These females are, therefore, considered as being monogametic, that is, as producing eggs with 5 chromosomes. A sex-determining mechanism arose in this manner, the spermatozoa with 5 chromosomes giving origin to females and those with 4 to males. The fact that the sex chromosome is one of the elements taking part in the formation of the group, seems highly interesting to the author. Tetraploid cysts have been occasionally found in the testis. In one individual the chromosomes of the tetraploid primary spermatocytes behaved as expected, forming a group of 14 elements, and two independent pairs or a tetravalent group In another individual, the chromosomes of the tetraploid cells have formed two independent groups of 7, and two independent pairs, as if both chromosomal sets were by their turn entirely independent frcm one another. This fact is certainly not devoid of special interest. The males as well as the females studied in this paper differed in nothing from the typical members of the species. The unique differential character of the new race is found in the umber and behavior of its chromosomes. It is highly remarkable that the occurrences which have transformed the 6 chromosomes normally present in the species into a new set of 9 elements, 7 of which have been profoun- dly altered in their structure, do not show any influence on the morphology of the organism. This fact, together with those found in the salivary-chromosomes races of Drosophila and Sciara. compromises strongly the genetical concept of position effects.
Breve notícia sôbre a espermatogênese de Lutosa brasiliensis Brunner (Tettigoniodea-Stenopelmatidae)
Resumo:
Lutosa brasiliensis, an Orthopteran Tettigonioidean belonging to the family Stenopelmatidae is referred to in this paper The spermatogonia are provided with 15 chromosomes, that is, 7 pairs of autosomes and a single sex chromosome. One pair of autosomes is much larger than the rest, two pairs are of median sized elements, and four pairs are of small ones. The daughter sex chromosomes show at anaphase great difficulty in reaching the poles, being left for a long while in the region of the equator where they are seen stretched one after the other on the same line or lying side by side in different positions. When the spermatogonium divides each daughter cell gets passively its sex chromosome. Though slowly, the sex chromosome finishes by beins enclosed in the nucleus. Its behavior may be attributed to a very weak kinetic activity of the centromere. In view of se pronouced an inertness of the sex chromosomes, two things may be expected : primary spermatocyte nuclei with two sex chromosomes, and primary spermatocytes with the sex chromosome lying outside the nucleus. Both situations have been discovered. The latter, together with the delay of the spermatogonial sex chromosome in reaching the poles suggested to the anther the mechanism which might have given origin to the cases in which the sex chromosome normally does not enter the nucleus to rejoin the autosomes, remaning outside in its own nucleus. It may well be supposed that accidents like that found in the present individual have turned to be a normal event in the course of the evolution of some species. Trie primary spermatocytes are provided with chromatoid bodies which remain visible all over the whole history of the cells and pass to one of the resulting secondary spermatocytes, the larger of them being found later in the area occupied by the tails of the spermatozoa. No relation of these bodies to nucleoli con?d be established. Pachytene and diplotene nuclei are normal Metaphase nuclei show 7 autosomal tetrads, one of which being much larger than the rest. At this stage the chromosomes have a pronounced tendency to form clumps. Even when they are separated from each other they generally appear competed by chromosomal substance. The sex chromosome Hes always in one of the poles, being enclosed in the nucleus formed there. The stickness of the chromosomes can also be noted at anaphase. Telophase chromosomes distend them- selves for giving origin to secondary spermatocyte nuclei in a state comparable to a beginning prophase. As the secondary spermatocytes approach metaphase the autosomes appear entirely divided except at the kinetochore where the chromatids remain united. In the division of the secondary spermatocytes nothing else merits special reference.
Resumo:
A detailed preliminary histological analysis of Helobdella hyalina Ringuelet, 1942 male system from Los Talas, Buenos Aires, Argentina is described. Six pairs of testisacs, located between the crop caeca, form the male reproductive system. Each testisac is clothed by the mesotelium. Inside it, the germinal cells are connected to the citophore and develop functional unit called poliplast. The spermatozoa are released into testisacs after the reabsortion of the citophore. Five stages of spermatogenesis are described taking into account the successive maturation stages of germinal cells and the changes in the citophore size. Lining cells and gland cells were found in the seminal vesicle. Five different types of gland cells are placed inside the ejaculatory ducts, as well as two kinds of cells are found in its distal portion: type 1, which produces eosinophilic granular secretion, type 2, with amorphous and slightly eosinophilic. Three distinct gland cells are located in the proximal portion of the duct: type 3, which produces a strongly eosinophilic granular secretion; type 4, with a negative eosinophilic amorphous secretion and type 5, with a basophilic granular secretion. Type 5 gland cells are described for the ducts of this species only.
Resumo:
In Brazil all the fishes belonging to the sub-family Curimatinae are called « saguirú ». The present work gives a biological study of the Curimatus elegans Steind., a small fish without any economical importance, which is to be found along the whole brazilian coast, down till Paraguay. The specimens utilized for the present study come from Fortaleza (Ceará, north-eastern Brazil). The C. elegans is « ilyophagus », that means, it feeds itself exclusively with those organic materials to be found in mud, specially with microscopical algae. The intestines are very extent, some of them measuring about 9 to 11 times body's length. Studies have been made about growth and age of the C. elegans; the biggest sizes found were of 153 mm. for females and 88 mm. for males. The C. elegans shows developed sexual glands during a long period (April to September). The movements of the spermatozoa, in contact with water is of 40 to 50 seconds of intense movements, ceasing after 70 to 100 seconds. In contact with 0.5% NaCl-solution spermatozoa show a big increase in movements-time, that can last till about 25 minutes. The eggs' diameter measures 0.70 to 0.73 mm., mature and hydrated it attains 0.93 to 1,00 mm. There is a certain correlation between the size of the body and the quantity of eggs. Big specimens can produce a total of 200.000 eggs. The average quantity contained in 1 gr. and 1 cc. is 6018 and 6229 eggs, respectively. Maturity and spawning in laboratory has been obtained due to injections of suspension of fish-hypophysis. Three or four hours after the injection, fishes show more movement and evident signs of excitation, proceeding spawning after 5 to 6 hours. Males, persecuting females, describe successive circles (merry-go-round) - carroussel), swimming side by side with females up to water's surface, where sexual products are start beating dry, for there is no blood yet. Circulation-scheme is to be found on fig. 4 and 5. The swim-bladder and the stomach are but delineated; the intestine is formed by a cylindric tube, all closed. At the place, where later on there will open the mouth, we find a group of ciliary hairs that produce a liquid current, very evident by the semi-circle formed by attached solid particles. After 36 hours, opening of the mouth and formation of the gill slits begin. At the age of 90 hours (4 mm.) the larvas swim well and start to feed themselves; the digestive tube is now all open and the swimbladder works already. During the first days of life, larvas have an adhesive organ situated at their frontal region (fig. 7) in form of a crescent, by means of which they hang to surrounding vegetation (fig. 6). When the larva begins to swim and to feed itself and its yolk are having been absorbed. the adhesive organ retracts and disappears. While larvas and alevins feed themselves with plancton, they have small eye-teeth, which disappear,. when fishes become « ilyophagus ». There exist too, during their life as larvas, pharyngeal-teeth. The lateral line appears in the larva after 16 to 18 days; more or less at the same time all fins are completely developed. Shortly after, first scales appear (20 to 23 days). Evolution of intestines twisting followed (fig. 9). Larvas show at different parts of their bodies small of organs excretory functions, that are constituted by bottons in serial disposition, every one with an excretory canal that opens towards the outside. These formations disappear suddenly when larvas attain their phase of alevin. The existence of a great number of said formations at the caudal fin (fig. 12) is of great interest. In our experiences of breeding we have employed several thousands of C. elegans larvas in different environs and we made conditions of surrounding change (illumination), depth of water, temperature, presence of sand at bottom of aquariums and without sand, food). In this way we could compare the results obtained, estimate the action of each factor for the realisation of a good bring-up of larvas.
Resumo:
The action of colchicine upon the spermatogenesis of Triatoma infestans, (Hemipt. Heteroptera), has been studied and the different categories of giant spermatids that appear during the treatment have been compared with the nuclear volumes of the whole series of normal spermatogenetic stages. The following facts have been ascertained: 1) 4 hours after the treatment the gonial mitotic metaphases, and the 1st. and 2nd. metaphases of meiosis are stopped. The prophasic stages of meiosis and diakynesis appear to be normal. After 9 days of treatment, all the tetrads are broken in the meiotic metaphases and the cells appear with 44 and 22 chromosomes respectively, scattered in the cytoplasm. 2) At 9 days, practically all spermatogenetic stages have disappeared except for a few cysts of spermatogonia, and practically the whole testicle is full of cysts of spermatozoa and spermatid, with some large zones of necrosis with pycnotic nuclei. The spermatids appear to be of different sizes and the statistical analysis of the nuclear volumes gives a polymodal hystogram with 4 modes, whose volumes are in the ratio of 1:2:4:8. Ripe spermatozoa seem to have a certain volume variability, that has not been possible to analyse quantitatively. All these facts confirm what DOOLEY found in the colchicinized Orthoptera testicle. 3) The caryometric analysis conducted statistically on the normal stages of the spermatogenesis (resting spermatogonia, gonial prophases, leptotene, "confused stage", diakynesis, and spermatid) revealed the following facts: a) Considering the volume of the resting, spermatogonia as 1, their mitotic prophases have a volume of 2. Some rare prophases appear to have a volume of 4 and probably belong to tetraployd spermatogonia normally present in the testicle of Hemiptera. b) The first spermatocyte at the beginning of the auxocitary growth (leptotene) has a volume of 2, which is equal to that of them gonial prophase. It grows further during the "confused stage" and reduplicates, reaching thus the volume of 4. Diakynesis has a rather variable nuclear volume and it is higher than volume 4. This is probably of physico-chemical nature and not a growth increase. c) The spermatid at the beginning of the spermiogenetic process has a volume of 1 which is very constant and homogeneous. 4) These results can be summarized concluding that the meiotic process begins from a spermatogonium at the end of his mitotic interphasic growth (vol. 2) and instead of entering into the mitotic prophase transforms itself into the leptotene spermatocyte. During the diplotene ("confused stage") the volume of the nucleus doubles once more and reaches volume 4. In consequence of the two successive meiotic divisions the spermatid, although having an haploid number of chromosomes, has a nuclear volume of 1, just like the diploid spermatogonium. The interpretation of this strange result probably comes from the existence of the "tertiary split" in the chromosomes of the haploid set, that has been illustrated in the Hemiptera by HUGUES SCHRADER and in Orthoptera by MICKEY and co-workers. The tertiary split indicates that the chromosomes of the haploid set are constituted from almost two chromonemata, and this double constitution corresponds to the double cycle of reduplication that takes place during the spermatogenesis starting from the resting gonia. In Triatoma infestans the tertiary split appears in the chromosomes in the 1st. and 2nd. metaphases and in the diakynesis. In the blocked metaphases at the 9th. day of colchicinization some of the 44 elements scattered in the cytoplasm, show, when properly oriented, the split very clearly. Some new and strange facts revealed by SCHRADER and LEUCHTEMBERGER in Arvelius suggest the possibility of other interpretations of the rhythmic growth in special cases. There appears the necessity of more knowledge about the multiple or simple constitution of the chromosomes in somatic and spermatogonial mitosis.
Resumo:
One debated issues in evolutionary biology is, why in many species females mate with multiple males. Several hypotheses have been put forward, yet the benefits of multiple mating (here defined as mating with several males) remain unclear in many cases. The sperm sexual selection (SSS) hypothesis has been developed to account for the widespread occurrence of multiple mating in females. It argues that multiple mating by females may rapidly spread, when initially a small fraction of the females mate multiply, and if there is a heritable difference among males in one or several of the four characteristics: (1) the quantity of sperm they produce; (2) the success of their sperm in reaching and fertilizing an egg; (3) their ability to displace the sperm that females stored during previous mating; and (4) their ability to prevent any other male from subsequently introducing sperm (e.g., differential efficiency of mating plugs).