286 resultados para BIREFRINGENCE
Resumo:
The lyotropic liquid crystalline quaternary mixture made of potassium laurate (KL), potassium sulphate, 1-undecanol and water was investigated by experimental optical methods (optical microscopy and laser conoscopy). In a particular temperature and relative concentrations range, the three nematic phases (two uniaxial and one biaxial) were identified. The biaxial domain in the temperature/KL concentration surface is larger when compared to other lyotropic mixtures. Moreover, this new mixture gives nematic phases with higher birefringence than similar systems. The behavior of the symmetric tensor order parameter invariants sigma(3) and sigma(2) calculated from the measured optical birefringences supports that the uniaxial-to-biaxial transitions are of second order, described by a mean-field theory.
Resumo:
We use Z-scan technique to investigate the nonlinear optical response of the thermotropic liquid crystal E7 in the neighborhood of the nematic-isotropic phase transition. The analysis of the data for the nonlinear optical birefringence is compatible with an effective critical exponent of the order parameter, beta = 0.28 +/- 0.03, which is close to the classical value, beta = 0.25, for a tricritical point. The nonlinear optical absorption in the nematic range depends on the geometrical configuration of the nematic director with respect to the polarization beam, and vanishes in the isotropic phase.
Resumo:
Lyotropic liquid crystalline quaternary mixtures of potassium laurate (KL), potassium sulphate (K2SO4)/alcohol (n-OH)/water, with the alcohols having different numbers of carbon atoms in the alkyl chain (n), from 1-octanol to 1-hexadecanol, were investigated by optical techniques (optical microscopy and laser conoscopy). The biaxial nematic phase domain is present in a window of values of n = n(KL) +/- 2, where n(KL) = 11 is the number of carbon atoms in the alkyl chain of KL. The biaxial phase domain became smaller and the uniaxial-to-biaxial phase transition temperatures shifted to relatively higher temperatures upon going from 1-nonanol to 1-tridecanol. Moreover, compared with other lyotropic mixtures these new mixtures present high birefringence values, which we expect to be related to the micellar shape anisotropy. Our results are interpreted assuming that alcohol molecules tend to segregate in the micelles in a way that depends on the relative value of n with respect to nKL. The larger the value of n, the more alcohol molecules tend to be located in the curved parts of the micelle, favoring the uniaxial nematic calamitic phase with respect to the biaxial and uniaxial discotic nematic phases.
Resumo:
In this study, azocopolymers containing different main-chain segments have been synthesized with diglycidyl ether of bisphenol A (DGEBA, DER 332, n=0.03) and the azochromophore Disperse Orange 3 (DO3) cured with twomonoamines, viz. benzylamine (BA) and m-toluidine (MT). The photoinduced birefringence was investigated in films produced with these azopolymers using the spin coating (SC) and Langmuir Blodgett (LB) techniques. In the LB films, birefringence increased with the content of azochromophore and the film thickness, as expected. The nanostructured nature of the LB films led to an enhanced birefringence and faster dynamics in the writing process, compared to the SC films. In summary, the combination of azocopolymers and the LBmethod may allow materials with tuned properties for various optical applications, including in biological systems were photoisomerization may be used to trigger actions such as drug delivery.
Resumo:
For its particular position and the complex geological history, the Northern Apennines has been considered as a natural laboratory to apply several kinds of investigations. By the way, it is complicated to joint all the knowledge about the Northern Apennines in a unique picture that explains the structural and geological emplacement that produced it. The main goal of this thesis is to put together all information on the deformation - in the crust and at depth - of this region and to describe a geodynamical model that takes account of it. To do so, we have analyzed the pattern of deformation in the crust and in the mantle. In both cases the deformation has been studied using always information recovered from earthquakes, although using different techniques. In particular the shallower deformation has been studied using seismic moment tensors information. For our purpose we used the methods described in Arvidsson and Ekstrom (1998) that allowing the use in the inversion of surface waves [and not only of the body waves as the Centroid Moment Tensor (Dziewonski et al., 1981) one] allow to determine seismic source parameters for earthquakes with magnitude as small as 4.0. We applied this tool in the Northern Apennines and through this activity we have built up the Italian CMT dataset (Pondrelli et al., 2006) and the pattern of seismic deformation using the Kostrov (1974) method on a regular grid of 0.25 degree cells. We obtained a map of lateral variations of the pattern of seismic deformation on different layers of depth, taking into account the fact that shallow earthquakes (within 15 km of depth) in the region occur everywhere while most of events with a deeper hypocenter (15-40 km) occur only in the outer part of the belt, on the Adriatic side. For the analysis of the deep deformation, i.e. that occurred in the mantle, we used the anisotropy information characterizing the structure below the Northern Apennines. The anisotropy is an earth properties that in the crust is due to the presence of aligned fluid filled cracks or alternating isotropic layers with different elastic properties while in the mantle the most important cause of seismic anisotropy is the lattice preferred orientation (LPO) of the mantle minerals as the olivine. This last is a highly anisotropic mineral and tends to align its fast crystallographic axes (a-axis) parallel to the astenospheric flow as a response to finite strain induced by geodynamic processes. The seismic anisotropy pattern of a region is measured utilizing the shear wave splitting phenomenon (that is the seismological analogue to optical birefringence). Here, to do so, we apply on teleseismic earthquakes recorded on stations located in the study region, the Sileny and Plomerova (1996) approach. The results are analyzed on the basis of their lateral and vertical variations to better define the earth structure beneath Northern Apennines. We find different anisotropic domains, a Tuscany and an Adria one, with a pattern of seismic anisotropy which laterally varies in a similar way respect to the seismic deformation. Moreover, beneath the Adriatic region the distribution of the splitting parameters is so complex to request an appropriate analysis. Therefore we applied on our data the code of Menke and Levin (2003) which allows to look for different models of structures with multilayer anisotropy. We obtained that the structure beneath the Po Plain is probably even more complicated than expected. On the basis of the results obtained for this thesis, added with those from previous works, we suggest that slab roll-back, which created the Apennines and opened the Tyrrhenian Sea, evolved in the north boundary of Northern Apennines in a different way from its southern part. In particular, the trench retreat developed primarily south of our study region, with an eastward roll-back. In the northern portion of the orogen, after a first stage during which the retreat was perpendicular to the trench, it became oblique with respect to the structure.
Resumo:
The influence of shear fields on water-based systems was investigated within this thesis. The non-linear rheological behaviour of spherical and rod-like particles was examined with Fourier-Transform rheology under LAOS conditions. As a model system for spherical particles two different kinds of polystyrene dispersions, with a solid content higher than 0.3 each, were synthesised within this work. Due to the differences in polydispersity and Debye-length, differences were also found in the rheology. In the FT-rheology both kinds of dispersions showed a similar rise in the intensities of the magnitudes of the odd higher harmonics, which were predicted by a model. The in some cases additionally appearing second harmonics were not predicted. A novel method to analyse the time domain signal was developed, that splits the time domain signal up in four characteristic functions. Those characteristic functions correspond to rheological phenomena. In some cases the intensities of the Fourier components can interfere negatively. FD-virus particles were used as a rod-like model system, which already shows a highly non-linear behaviour at concentrations below 1. % wt. Predictions for the dependence of the higher harmonics from the strain amplitude described the non-linear behaviour well at large, but no so good at small strain amplitudes. Additionally the trends of the rheological behaviour could be described by a theory for rod-like particles. An existing rheo-optical set-up was enhanced by reducing the background birefringence by a factor of 20 and by increasing the time resolution by a factor of 24. Additionally a combination of FT-rheology and rheo-optics was achieved. The influence of a constant shear field on the crystallisation process of zinc oxide in the presence of a polymer was examined. The crystallites showed a reduction in length by a factor of 2. The directed addition of polymers in combination with a defined shear field can be an easy way for a defined change of the form of crystallites.
Resumo:
In this thesis, I present the realization of a fiber-optical interface using optically trapped cesium atoms, which is an efficient tool for coupling light and atoms. The basic principle of the presented scheme relies on the trapping of neutral cesium atoms in a two-color evanescent field surrounding a nanofiber. The strong confinement of the fiber guided light, which also protrudes outside the nanofiber, provides strong confinement of the atoms as well as efficient coupling to near-resonant light propagating through the fiber. In chapter 1, the necessary physical and mathematical background describing the propagation of light in an optical fiber is presented. The exact solution of Maxwell’s equations allows us to model fiber-guided light fields which give rise to the trapping potentials and the atom-light coupling in the close vicinity of a nanofiber. Chapter 2 gives the theoretical background of light-atom interaction. A quantum mechanical model of the light-induced shifts of the relevant atomic levels is reviewed, which allows us to quantify the perturbation of the atomic states due to the presence of the trapping light-fields. The experimental realization of the fiber-based atom trap is the focus of chapter 3. Here, I analyze the properties of the fiber-based trap in terms of the confinement of the atoms and the impact of several heating mechanisms. Furthermore, I demonstrate the transportation of the trapped atoms, as a first step towards a deterministic delivery of individual atoms. In chapter 4, I present the successful interfacing of the trapped atomic ensemble and fiber-guided light. Three different approaches are discussed, i.e., those involving the measurement of either near-resonant scattering in absorption or the emission into the guided mode of the nanofiber. In the analysis of the spectroscopic properties of the trapped ensemble we find good agreement with the prediction of theoretical model discussed in chapter 2. In addition, I introduce a non-destructive scheme for the interrogation of the atoms states, which is sensitive to phase shifts of far-detuned fiber-guided light interacting with the trapped atoms. The inherent birefringence in our system, induced by the atoms, changes the state of polarization of the probe light and can be thus detected via a Stokes vector measurement.
Resumo:
In der vorliegenden Arbeit wurden Struktur-Eigenschaftsbeziehungen des konjugierten Modell-Polymers MEH-PPV untersucht. Dazu wurde Fällungs-fraktionierung eingesetzt, um MEH-PPV mit unterschiedlichem Molekulargewicht (Mw) zu erhalten, insbesondere MEH-PPV mit niedrigem Mw, da dieses für optische Wellenleiterbauelemente optimal geeignet ist Wir konnten feststellen, dass die Präparation einer ausreichenden Menge von MEH-PPV mit niedrigem Mw und geringer Mw-Verteilung wesentlich von der geeigneten Wahl des Lösungsmittels und der Temperatur während der Zugabe des Fällungsmittels abhängt. Alternativ dazu wurden UV-induzierte Kettenspaltungseffekte untersucht. Wir folgern aus dem Vergleich beider Vorgehensweisen, dass die Fällungsfraktionierung verglichen mit der UV-Behandlung besser geeignet ist zur Herstellung von MEH-PPV mit spezifischem Mw, da das UV-Licht Kettendefekte längs des Polymerrückgrats erzeugt. 1H NMR and FTIR Spektroskopie wurden zur Untersuchung dieser Kettendefekte herangezogen. Wir konnten außerdem beobachten, dass die Wellenlängen der Absorptionsmaxima der MEH-PPV Fraktionen mit der Kettenlänge zunehmen bis die Zahl der Wiederholeinheiten n 110 erreicht ist. Dieser Wert ist signifikant größer als früher berichtet. rnOptische Eigenschaften von MEH-PPV Wellenleitern wurden untersucht und es konnte gezeigt werden, dass sich die optischen Konstanten ausgezeichnet reproduzieren lassen. Wir haben die Einflüsse der Lösungsmittel und Temperatur beim Spincoaten auf Schichtdicke, Oberflächenrauigkeit, Brechungsindex, Doppelbrechung und Wellenleiter-Dämpfungsverlust untersucht. Wir fanden, dass mit der Erhöhung der Siedetemperatur der Lösungsmittel die Schichtdicke und die Rauigkeit kleiner werden, während Brechungsindex, Doppelbrechung sowie Wellenleiter-Dämpfungsverluste zunahmen. Wir schließen daraus, dass hohe Siedetemperaturen der Lösungsmittel niedrige Verdampfungsraten erzeugen, was die Aggregatbildung während des Spincoatings begünstigt. Hingegen bewirkt eine erhöhte Temperatur während der Schichtpräparation eine Erhöhung von Schichtdicke und Rauhigkeit. Jedoch nehmen Brechungsindex und der Doppelbrechung dabei ab.rn Für die Schichtpräparation auf Glassubstraten und Quarzglas-Fasern kam das Dip-Coating Verfahren zum Einsatz. Die Schichtdicke der Filme hängt ab von Konzentration der Lösung, Transfergeschwindigkeit und Immersionszeit. Mit Tauchbeschichtung haben wir Schichten von MEH-PPV auf Flaschen-Mikroresonatoren aufgebracht zur Untersuchung von rein-optischen Schaltprozessen. Dieses Verfahren erweist sich insbesondere für MEH-PPV mit niedrigem Mw als vielversprechend für die rein-optische Signalverarbeitung mit großer Bandbreite.rn Zusätzlich wurde auch die Morphologie dünner Schichten aus anderen PPV-Derivaten mit Hilfe von FTIR Spektroskopie untersucht. Wir konnten herausfinden, dass der Alkyl-Substitutionsgrad einen starken Einfluss auf die mittlere Orientierung der Polymerrückgrate in dünnen Filmen hat.rn
Resumo:
Am Mainzer Mikrotron MAMI wurde ein neuartiges Interferometer entwickelt und getestet, mit dem magneto-optische Effekte an dünnen, freitragenden Folien von 3d-Übergangsmetallen wie Eisen, Kobalt oder Nickel an den L_{2,3}-Absorptionskanten (im Spektralbereich der weichen Röntgenstrahlung) gemessen werden können. Es handelt sich um eine Weiterentwicklung eines an MAMI erprobten Interferometers, das im wesentlichen aus einer kollinearen Anordnung zweier identischer Undulatoren, zwischen die die dünne Probefolie eingebracht wird, und einem Gitterspektrometer besteht. Aus den als Funktion des Abstands der Undulatoren beobachtbaren Intensitätsoszillation lassen sich das Dekrement des Realteils δ und der Absorptionskoeffizient β des komplexen Brechungsindex bestimmen.rnIm Rahmen der vorliegenden Arbeit wurde die Apparatur derart weiterentwickelt, dass auch die magnetisch zirkulare Doppelbrechung Δδ und der magnetisch zirkulare Dichroismus Δβ an den L_{2,3}-Absorptionskanten von Übergangsmetallen gemessen werden können. Der zweite Undulator wurde um die Elektronenstrahlachse um den Winkel Ψ = ±107° drehbar gemacht. Damit dient er auch als Analysator der aus der Folie austretenden elliptisch polarisierten weichen Röntgenstrahlung, für die - wie bei der Faraday-Rotation - die Polarisationsebene gedreht ist. Weiterhin kann die Spaltbreite der 10-poligen Hybrid-Undulatoren mit einer Periodenlänge von 12 mm und damit der Undulatorparameter über eine Antriebsmechanik kontinuierlich variiert werden, wodurch eine optimale Anpassung der Amplituden der Undulatorstrahlung aus den beiden Undulatoren möglich wird. Der maximale Undulatorparameter beträgt K = 1.1. Auch das Spektrometer, das auf einem selbstfokussierenden Gitter mit variierter Liniendichte (im Mittel 1400 Linien / mm) basiert, wurde weiterentwickelt. Als Detektor kommt jetzt eine fensterlose CCD mit 1024 x 1024 Pixeln und einer Pixelgröße von 13 μm x 13 μm zum Einsatz, die im Bildmodus betrieben wird, was die gleichzeitige Messung eines Energieintervalls von ca. 50 eV ermöglicht. Die totale Linienbreite wurde bei einer vertikalen Strahlfleckausdehnung von σ_y = 70 μm (rms) am Neon 1s-3p Übergang bei (867.18 ±0.02) eV zu Δħω = (0.218 ±0.002) eV (FWHM) gemessen. Das hohe Auflösungsvermögen von 4000 und die Möglichkeit der Eichung gegen den 1s-3p Übergang von Neon wurden ausgenutzt, um die Energie der Maxima an den Absorptionskanten von Nickel (weiße Linien) neu zu bestimmen. Die Ergebnisse E_{L_2}=(869.65_{-0.16}^{+0.27}) eV und E_{L_3}=(852.37_{-0.11}^{+0.16}) eV stellen eine Verbesserung früherer Messungen dar, die große Streuungen aufwiesen.rnAus systematischen Messungen als Funktion des Abstandes der Undulatoren und des Drehwinkels Ψ wurden die magnetisch zirkulare Doppelbrechung Δδ im Energiebereich 834 eV ≤ ħω ≤ 885 eV an einer freitragenden, bis zur Sättigung magnetisierten Nickelfolie der Dicke von (96.4 ±2.7) nm gemessen. Sowohl das Auflösungsvermögen als auch die Genauigkeit der Messungen für Δδ übersteigen bekannte Literaturangaben signifikant, so dass eine bisher nicht bekannte Feinstruktur gefunden werden konnte. Außerdem wurde der Betrag des magnetisch zirkularen Dichroismus |Δβ| im Bereich des Maximums an der L_3-Absorptionskante mit hoher Genauigkeit gemessen.rn
Resumo:
One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.
Resumo:
Magnetic iron garnets as well as magnetic photonic crystals are of great interests in magneto-optic applications such as isolators, current captors, circulators, TE-TM mode conversion, wavelength accordable filters, optical sensors and switches, all of which provide a promising platform for future integrated optical circuits. In the present work, two topics are studied based on magnetic iron garnet films. In the first part, the characteristics of the magnetization are investigated for ridge waveguides fabricated on (100) oriented iron garnet thin films. The magnetic response in magneto-optic waveguides patterned on epitaxial magnetic garnet films depends on the crystallographic orientation of the waveguides and the magnetic anisotropy of the material. These can be studied by polarization rotation hysteresis loops, which are related to the component of magnetization parallel to the light propagation direction and the linear birefringence. Polarization rotation hysteresis loops for low birefringence waveguides with different orientations are experimentally investigated. Asymmetric stepped curves are obtained from waveguides along, due to the large magnetocrystalline anisotropy in the plane. A model based on the free energy density is developed to demonstrate the motion of the magnetization and can be used in the design of magneto-optic devices. The second part of this thesis focuses on the design and fabrication of high-Q cavities in two-dimensional magneto-photonic crystal slabs. The device consists of a layer of silicon and a layer of iron garnet thin film. Triangular lattice elliptical air holes are patterned in the slab. The fundamental TM band gap overlaps with the first-order TE band gap from 0374~0.431(a/λ) showing that both TE and TM polarization light can be confined in the photonic crystals. A nanocavity is designed to obtain both TE and TM defect modes in the band gaps. Additional work is needed to overlap the TE and TM defect modes and obtain a high-Q cavity so as to develop miniaturized Faraday rotators.
Resumo:
The application of photonic crystal technology on metal-oxide film is a very promising field for future optical telecommunication systems. Band gap and polarization effects in lithium niobate (LiNbO3) photonic crystals and bismuth-substituted iron garnets (BiYIG) photonic crystals are investigated in this work reported here. The design and fabrication process are similar for these two materials while the applications are different, involving Bragg filtering in lithium niobate and polarization rotation in nonreciprocal iron garnets. The research of photonic structures in LiNbO3 is of high interest for integrated device application due to its remarkable electro-optical characteristics. This work investigated the photonic band gap in high quality LiNbO3 single crystalline thin film by ion implantation to realize high efficiency narrow bandwidth filters. LiNbO3 thin film detachment by bonding is also demonstrated for optical device integration. One-dimensional Bragg BiYIG waveguides in gyrotropic system are found to have multiple stopbands and evince enhancement of polarization rotation efficiency. Previous photon trapping theory cannot explain the phenomena because of the presence of linear birefringence. This work is aimed at investigating the mechanism with the support of experiments. The results we obtained show that selective suppression of Bloch states in gyrotropic bandgaps is the key mechanism for the observed phenomena. Finally, the research of ferroelectric single crystal PMN-PT with ultra high piezoelectric coefficient as a biosensor is also reported. This work presents an investigation and results on higher sensitivity effects than conventional materials such as quartz and lithium niobate.
Resumo:
Three methods for distortion-free enhancement of electro-optic sampling measurements of terahertz signals are tested. In the first part of this two-paper series [J. Opt. Soc. Am B 31, 904–910 (2014)], the theoretical framework for describing the signal enhancement was presented and discussed. As the applied optical bias is decreased, individual signal traces become enhanced but distorted. Here we experimentally show that nonlinear signal components that distort the terahertz electric field measurement can be removed by subtracting traces recorded with opposite optical bias values. In all three methods tested, we observe up to an order of magnitude increase in distortion-free signal enhancement, in agreement with the theory, making possible measurements of small terahertz-induced transient birefringence signals with increased signal-to-noise ratio.
Resumo:
One of the most promising applications for the restoration of small or moderately sized focal articular lesions is mosaicplasty (MP). Although recurrent hemarthrosis is a rare complication after MP, recently, various strategies have been designed to find an effective filling material to prevent postoperative bleeding from the donor site. The porous biodegradable polymer Polyactive (PA; a polyethylene glycol terephthalate - polybutylene terephthalate copolymer) represents a promising solution in this respect. A histological evaluation of the longterm PA-filled donor sites obtained from 10 experimental horses was performed. In this study, attention was primarily focused on the bone tissue developed in the plug. A computer-assisted image analysis and quantitative polarized light microscopic measurements of decalcified, longitudinally sectioned, dimethylmethylene blue (DMMB)- and picrosirius red (PS) stained sections revealed that the coverage area of the bone trabecules in the PA-filled donor tunnels was substantially (25%) enlarged compared to the neighboring cancellous bone. For this quantification, identical ROIs (regions of interest) were used and compared. The birefringence retardation values were also measured with a polarized light microscope using monochromatic light. Identical retardation values could be recorded from the bone trabeculae developed in the PA and in the neighboring bone, which indicates that the collagen orientation pattern does not differ significantly among these bone trabecules. Based on our new data, we speculate that PA promotes bone formation, and some of the currently identified degradation products of PA may enhance osteo-conduction and osteoinduction inside the donor canal.
Resumo:
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain-specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 ºC. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 ºC. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube elements cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC:POC, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC:POC-temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to less coccolith malformations.