994 resultados para BIOCHEMICAL-CHARACTERIZATION
Resumo:
MITOCHONDRIAL DYSFUNCTION IN HEREDITARY OPTIC NEUROPATHIES Mitochondrial pathologies are a heterogeneous group of clinical manifestations characterized by oxidative phosphorylation impairment. At the beginning of their recognition mitochondrial pathologies were regarded as rare disorders but indeed they are more frequent than originally thought. Due to the unique mitochondria peculiarities mitochondrial pathologies can be caused by mutations in both mitochondrial and nuclear genomes. The poor knowledge of pathologic mechanism of these disorders has not allowed a real development of the “mitochondrial medicine”, that is currently limited to symptoms mitigation. Leber hereditary optic neuropathy (LHON) was the first pathology to be linked to a point mutation in the mtDNA. The mechanism by which point mutations in mitochondrial gene encoding Complex I subunits leads to optic nerve degeneration is still unknown, although is well accepted that other genetic or environmental factors are involved in the modulation of pathology, where a pivotal role is certainly played by oxidative stress. We studied the relationship between the Ala16Val dimorphism in the mitochondrial targeting sequence of nuclear gene SOD2 and the 3460/ND1 LHON mutation. Our results show that, in control population, the heterozygous SOD2 genotype is associated to a higher activity and quantity of MnSOD, particularly with respect to Val homozygotes. Furthermore, we demonstrated that LHON patients harboring at least one Ala allele are characterized by an increased MnSOD activity with respect to relative control population. Since the ATP synthesis rate – severely reduced in LHON patients lymphocytes - is not affected by the SOD2 genotype, we concluded that SOD2 gene could modulate the pathogenicity of LHON mutations through a mechanism associated to an increase of reactive oxygen species production. Autosomal dominant optic atrophy (ADOA) is a pathology linked to mutations in nuclear gene encoding Opa1, a dynamin-related protein localized in the mitochondrial matrix. Although the clinical course is slightly different, the endpoint of ADOA is exactly the same of LHON: optic nerve degeneration with specific involvement of retinal ganglion cells. Opa1 is a relatively new protein, whose major role is the regulation of mitochondrial fusion. Mitochondrial morphology is the results of the equilibrium between two opposite force: fusion and fission, two processes that have to be finely regulated in order to preserve mitochondrial and cellular physiology. We studied fibroblasts deriving from ADOA patients characterized by a new deletion in the GTPase domain of the OPA1 gene. The biochemical characterization of ADOA and control fibroblasts has concerned the evaluation of ATP synthesis rate, mitochondrial membrane potential in different metabolic conditions and the morphological status of mitochondria. Regarding ATP synthesis rate we did not find significant differences between ADOA and control fibroblasts even though a trend toward increased reduction in ADOA samples is observed when fibroblasts are grown in absence of glucose or in the medium containing gramicidin. Furthermore, we found that also in ADOA fibroblasts membrane potential is actively maintained by proton pumping of fully functional respiratory chain complexes. Our results indicate that the mutation found in the pedigree analyzed acts primary impairing the mitochondrial fusion without affecting the energy production, supporting the notion that cell function is tightly linked to mitochondrial morphology. Mitochondrial dysfunctions are acquiring great attention because of their recognized relevance not only in aging but also in age-related pathologies including cancer, cardiovascular disease, type II diabetes, and neurodegenerative disorders. The involvement of mitochondria in such detrimental pathologies that, currently, have become so common enhances the necessity of standardization of therapeutic strategies capable of rescuing the normal mitochondrial function. In order to propose an alternative treatment for energy deficiency-disorders we tested the effect of substrates capable to stimulate the substrate-level phosphorylation on viability and energy availability in different experimental models grown under different metabolic conditions. In fibroblasts, the energy defect was achieved by culturing cells in presence of oligomycin, an inhibitor of ATP synthase complex. NARP cybrids have been used as model of mitochondrial pathology. Cell viability and ATP content have been considered as parameters to assay the capability of exogenous substrate to rescue energy failure. Our results suggest that patients suffering for some forms of ATP synthase deficiency, or characterized by a deficiency in energy production, might benefit from dietary or pharmacological treatment based on supplementation of α-ketoglutarate and aspartate.
Resumo:
Bei der amyotrophen Lateralsklerose 1 (ALS1) handelt es sich um eine altersabhängige Motoneuronenerkrankung, die durch Mutationen im Gen der Cu/Zn-Superoxid Dismutase (hSOD1mut) ausgelöst wird. Die toxischen Eigen¬schaften von hSOD1mut (z. B. Aggregations- oder oxidative Stress-Hypothese) und der Einfluss wildtypischer hSOD1 (hSOD1WT) auf den Krankheitsverlauf sind weithin ungeklärt. Das Ziel dieser Arbeit war es, die Auswirkungen von hSOD1mut-hSOD1WT-Heterodimeren im Vergleich zu mutanten Homodimeren auf die Pathogenese der ALS1 zu untersuchen. Nachdem gezeigt werden konnte, dass es in humanen Zellen in der Tat zu einer Bil¬dung hetero- und homodimerer mutanter hSOD1-Spezies kommt, wurden Dimerfusionsproteine aus zwei hSOD1-Monomeren generiert, die durch einen flexiblen Peptidlinker verbunden und C-terminal mit eGFP markiert waren. Neben hSOD1WT-WT wurden hSOD1mut-mut- und hSOD1mut-WT-Dimere mit vier verschiedenen hSOD1-Mu¬tanten untersucht. Die biochemische Charakterisierung zeigte, dass alle Dimere, die wildtyp-ähnliche hSOD1mut enthielten, eine Dismutaseaktivität aufwiesen. Im Gegensatz dazu war das Homodimer aus zwei metalldefizienten hSOD1G85R inaktiv, wobei interessanterweise hSOD1G85R mit hSOD1WT ein Dismutase-aktives Dimer bilden konnte. Sowohl in Zellkultursystemen als auch in einem C. elegans-Modell bildeten alle mutanten Homodimere vermehrt Aggregate im Vergleich zu den dazugehörigen Heterodimeren. Dieses Aggregationsverhalten korrelierte aber nicht mit der Toxizität der Dimerproteine in Überlebensassays und einer C. elegans Bewe¬gungs¬analyse. In diesen funktionellen Studien assoziierte die Toxizität der dimeren Fusionsproteine mit der enzy¬matischen Aktivität. In Übereinstimmung mit diesen Ergebnissen konnte gezeigt werden, dass hSOD1WT nicht in hSOD1mut-abhängigen Aggregaten vorkommt. Die Ergebnisse dieser Studie sprechen gegen die Aggregation als primäre toxische Eigen¬schaft der hSOD1mut und unterstützen die oxidative Stress-Hypothese. Dis¬mutase-inaktive hSOD1mut können eine untypische Enzymaktivität durch die Heterodimerisierung mit hSODWT erlangen, die auf diese Weise maßgeblich an der Pathogenese der ALS1 beteiligt sein könnte.
Resumo:
Ein discoidales Lipoprotein aus dem Polychaeten Nereis virens (Annelida) wurde eingehend charakterisiert. Im Vordergrund standen dabei die transportierten Lipide, sowie die Ultrastruktur des Partikels. Das Nereis-Lipoprotein besitzt eine für Invertebraten atypische Lipidzusammensetzung: Außer den Phospholipiden gibt es keine klar dominierende Lipidklasse. Die Charakterisierung der Apolipoproteine zeigt Gemeinsamkeiten mit den Apolipophorinen der Insekten: Wie diese besitzt das Nereis-Lipoprotein zwei Apolipoproteine, die in einer 1:1-Stöchiometrie angeordnet sind. Das größere Protein (ApoNvLp I) ist dabei stärker zum wässrigen Medium exponiert ist als das kleinere (ApoNvLp II). Beide Proteinuntereinheiten sind N-glycosyliert. ApoNvLp II ist zusätzlich noch O-glycosyliert. Bei den Sekundärstrukturen dominieren β-Strukturen (35%) gegenüber α-Helices (14%); 28% waren ungeordnete Strukturen. Die Masse wurde mit verschiedenen Methoden bestimmt: sie liegt zwischen ~800 kDa (Gelfiltration) und ~860 kDa (Analytische Ultrazentrifugation). Der Sedimentationskoeffizient beträgt 9,7 S. Der zelluläre Lipoproteinrezeptor wurde aus einer großen Anzahl von Zellen und Geweben isoliert. Die biochemische Charakterisierung des Rezeptormoleküls zeigte es als ein monomeres, integrales, N- und O-glycosyliertes Membranprotein mit einer Masse von ~114 kDa. Die Bindungscharakteristika (Abhängigkeit von Ca2+, Disulfidbrücken) weisen es als Mitglied der LDLR-Superfamilie aus. In vitro-Inkubationsversuche mit fluoreszenzmarkierten Lipoproteinen zeigten die Aufnahme sowohl in Oocyten als auch in freie Coelomzellen (Elaeocyten) sowie in Spermatogonien- und Tetradenstadien. Auffällig war, dass die Lipide zusammen mit den Apolipoproteinen in die Dottergranula der Eizellen eingelagert wurden und nicht direkt in die Lipidtropfen. Auch bei den Elaeocyten wurden die Lipide nicht direkt in den Lipidtropfen eingelagert. Intakte Lipoproteine konnten per Dichtegradienten-Ultrazentrifugation nur aus Spermatogonien isoliert werden. Die isolierten Lipoproteine hatten die gleiche ‚Morphologie’ wie die aus der Coelomflüssigkeit isolierten, zeigten jedoch sehr viele Peptidfragmente im SDS-Gel, was auf eine beginnende Degradation hinweist. Es wird ein Modell für den Lipidtransport in Nereis virens vorgeschlagen, bei dem den Elaeocyten eine entscheidende Rolle im Lipidstoffwechsel zufällt.
Resumo:
Fast quantitative MRI has become an important tool for biochemical characterization of tissue beyond conventional T1, T2, and T2*-weighted imaging. As a result, steady-state free precession (SSFP) techniques have attracted increased interest, and several methods have been developed for rapid quantification of relaxation times using steady-state free precession. In this work, a new and fast approach for T2 mapping is introduced based on partial RF spoiling of nonbalanced steady-state free precession. The new T2 mapping technique is evaluated and optimized from simulations, and in vivo results are presented for human brain at 1.5 T and for human articular cartilage at 3.0 T. The range of T2 for gray and white matter was from 60 msec (for the corpus callosum) to 100 msec (for cortical gray matter). For cartilage, spatial variation in T2 was observed between deep (34 msec) and superficial (48 msec) layers, as well as between tibial (33 msec), femoral, (54 msec) and patellar (43 msec) cartilage. Excellent correspondence between T2 values derived from partially spoiled SSFP scans and the ones found with a reference multicontrast spin-echo technique is observed, corroborating the accuracy of the new method for proper T2 mapping. Finally, the feasibility of a fast high-resolution quantitative partially spoiled SSFP T2 scan is demonstrated at 7.0 T for human patellar cartilage.
Resumo:
The mycobacterial cell envelope is fascinating in several ways. First, its composition is unique by the exceptional lipid content, which consists of very long-chain (up to C90) fatty acids, the so-called mycolic acids, and a variety of exotic compounds. Second, these lipids are atypically organized into a Gram-negative-like outer membrane (mycomembrane) in these Gram-positive bacteria, as recently revealed by CEMOVIS, and this mycomembrane also contains pore-forming proteins. Third, the mycolic acids esterified a holistic heteropolysaccharide (arabinogalacan), which in turn is linked to the peptidoglycan to form the cell wall skeleton (CWS). In slow-growing pathogenic mycobacterial species, this giant structure is surrounded by a capsular layer composed mainly of polysaccharides, primarily a glycogen-like glucan. The CWS is separated from the plasma membrane by a periplasmic space. A challenging research avenue for the next decade comprises the identification of the components of the uptake and secretion machineries and the isolation and biochemical characterization of the mycomembrane.
Resumo:
Lipids fulfill multiple and diverse functions in cells. Establishing the molecular basis for these functions has been challenging due to the lack of catalytic activity of lipids and the pleiotropic effects of mutations that affect lipid composition. By combining molecular genetic manipulation of membrane lipid composition with biochemical characterization of the resulting phenotypes, the molecular details of novel lipid functions have been established. This review summarizes the results of such a combined approach to defining lipid function in bacteria.
Resumo:
Chagas' disease, a devastating illness in the Western Hemisphere, is caused by the protozoan parasite Trypanosoma cruzi. Transmission is via bloodsucking insect vectors, congenitally, or through blood transfusion and/or organ transplantation. A significant percentage of heart-related illnesses and deaths each year are attributable to the number of persons with Chagas' disease. Currently, there is no FDA-approved routine screening of the U.S. blood supply being conducted by blood banks. The only current commercial assays available for detection of Trypanosoma cruzi are based on South American isolates, which may differ antigenically from those found in the US. In this study, the assay used intact parasites as antigen in an ELISA-type assay. Therefore, serological differences presumably reflected variations in surface antigens. The basis of differential antibody binding to these antigens is unknown. In this study, biochemical characterization and genetic polymorphism analysis will be performed on three defined surface proteins of T. cruzi epimastigotes.^
Resumo:
The cytoplasmic region of Fas, a mammalian death factor receptor, shares a limited homology with reaper, an apoptosis-inducing protein in Drosophila. Expression of either the Fas cytoplasmic region (FasC) or of reaper in Drosophila cells caused cell death. The death process induced by FasC or reaper was inhibited by crmA or p35, suggesting that its death process is mediated by caspase-like proteases. Both Ac-YVAD aldehyde and Ac-DEVD aldehyde, specific inhibitors of caspase 1- and caspase 3-like proteases, respectively, inhibited the FasC-induced death of Drosophila cells. However, the cell death induced by reaper was inhibited by Ac-DEVD aldehyde, but not by Ac-YVAD aldehyde. A caspase 1-like protease activity that preferentially recognizes the YVAD sequence gradually increased in the cytosolic fraction of the FasC-activated cells, whereas the caspase 3-like protease activity recognizing the DEVD sequence was observed in the reaper-activated cells. Partial purification and biochemical characterization of the proteases indicated that there are at least three distinct caspase-like proteases in Drosophila cells, which are differentially activated by FasC and reaper. The conservation of the Fas-death signaling pathway in Drosophila cells, which is distinct from that for reaper, may indicate that cell death in Drosophila is controlled not only by the reaper suicide gene, but also by a Fas-like killer gene.
Resumo:
Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a β-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Gln-Pro-Ser-Asn, with the second, third, and sixth position present in the D-configuration. The gene cluster from B. subtilis ATCC6633 specifying the biosynthesis of mycosubtilin was identified. The putative operon spans 38 kb and consists of four ORFs, designated fenF, mycA, mycB, and mycC, with strong homologies to the family of peptide synthetases. Biochemical characterization showed that MycB specifically adenylates tyrosine, as expected for mycosubtilin synthetase, and insertional mutagenesis of the operon resulted in a mycosubtilin-negative phenotype. The mycosubtilin synthetase reveals features unique for peptide synthetases as well as for fatty acid synthases: (i) The mycosubtilin synthase subunit A (MycA) combines functional domains derived from peptide synthetases, amino transferases, and fatty acid synthases. MycA represents the first example of a natural hybrid between these enzyme families. (ii) The organization of the synthetase subunits deviates from that commonly found in peptide synthetases. On the basis of the described characteristics of the mycosubtilin synthetase, we present a model for the biosynthesis of iturin lipopeptide antibiotics. Comparison of the sequences flanking the mycosubtilin operon of B. subtilis ATCC6633, with the complete genome sequence of B. subtilis strain 168 indicates that the fengycin and mycosubtilin lipopeptide synthetase operons are exchanged between the two B. subtilis strains.
Resumo:
Molecular, sequence-based environmental surveys of microorganisms have revealed a large degree of previously uncharacterized diversity. However, nearly all studies of the human endogenous bacterial flora have relied on cultivation and biochemical characterization of the resident organisms. We used molecular methods to characterize the breadth of bacterial diversity within the human subgingival crevice by comparing 264 small subunit rDNA sequences from 21 clone libraries created with products amplified directly from subgingival plaque, with sequences obtained from bacteria that were cultivated from the same specimen, as well as with sequences available in public databases. The majority (52.5%) of the directly amplified 16S rRNA sequences were <99% identical to sequences within public databases. In contrast, only 21.4% of the sequences recovered from cultivated bacteria showed this degree of variability. The 16S rDNA sequences recovered by direct amplification were also more deeply divergent; 13.5% of the amplified sequences were more than 5% nonidentical to any known sequence, a level of dissimilarity that is often found between members of different genera. None of the cultivated sequences exhibited this degree of sequence dissimilarity. Finally, direct amplification of 16S rDNA yielded a more diverse view of the subgingival bacterial flora than did cultivation. Our data suggest that a significant proportion of the resident human bacterial flora remain poorly characterized, even within this well studied and familiar microbial environment.
Resumo:
Deamination of 5-methylcytosine residues in DNA gives rise to the G/T mismatched base pair. In humans this lesion is repaired by a mismatch-specific thymine DNA glycosylase (TDG or G/T glycosylase), which catalyzes specific excision of the thymine base through N-glycosidic bond hydrolysis. Unlike other DNA glycosylases, TDG recognizes an aberrant pairing of two normal bases rather than a damaged base per se. An important structural issue is thus to understand how the enzyme specifically targets the T (or U) residue of the mismatched base pair. Our approach toward the study of substrate recognition and processing by catalytic DNA binding proteins has been to modify the substrate so as to preserve recognition of the base but to prevent its excision. Here we report that replacement of 2′-hydrogen atoms with fluorine in the substrate 2′-deoxyguridine (dU) residue abrogates glycosidic bond cleavage, thereby leading to the formation of a tight, specific glycosylase–DNA complex. Biochemical characterization of these complexes reveals that the enzyme protects an ≈20-bp stretch of the substrate from DNase I cleavage, and directly contacts a G residue on the 3′ side of the mismatched U derivative. These studies provide a mechanistic rationale for the preferential repair of deaminated CpG sites and pave the way for future high-resolution studies of TDG bound to DNA.
Resumo:
Syntaxin 1, synaptobrevins or vesicle-associated membrane proteins, and the synaptosome-associated protein of 25 kDa (SNAP-25) are key molecules involved in the docking and fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, cell biological, and biochemical characterization of a 32-kDa protein homologous to both SNAP-25 (20% amino acid sequence identity) and the recently identified SNAP-23 (19% amino acid sequence identity). Northern blot analysis shows that the mRNA for this protein is widely expressed. Polyclonal antibodies against this protein detect a 32-kDa protein present in both cytosol and membrane fractions. The membrane-bound form of this protein is revealed to be primarily localized to the Golgi apparatus by indirect immunofluorescence microscopy, a finding that is further established by electron microscopy immunogold labeling showing that this protein is present in tubular-vesicular structures of the Golgi apparatus. Biochemical characterizations establish that this protein behaves like a SNAP receptor and is thus named Golgi SNARE of 32 kDa (GS32). GS32 in the Golgi extract is preferentially retained by the immobilized GST–syntaxin 6 fusion protein. The coimmunoprecipitation of syntaxin 6 but not syntaxin 5 or GS28 from the Golgi extract by antibodies against GS32 further sustains the preferential interaction of GS32 with Golgi syntaxin 6.
Resumo:
Epithelio–mesenchymal interactions during kidney organogenesis are disrupted in integrin α8β1-deficient mice. However, the known ligands for integrin α8β1—fibronectin, vitronectin, and tenascin-C—are not appropriately localized to mediate all α8β1 functions in the kidney. Using a method of general utility for determining the distribution of unknown integrin ligands in situ and biochemical characterization of these ligands, we identified osteopontin (OPN) as a ligand for α8β1. We have coexpressed the extracellular domains of the mouse α8 and β1 integrin subunits as a soluble heterodimer with one subunit fused to alkaline phosphatase (AP) and have used the α8β1-AP chimera as a histochemical reagent on sections of mouse embryos. Ligand localization with α8β1-AP in developing bone and kidney was observed to be overlapping with the distribution of OPN. In “far Western” blots of mouse embryonic protein extracts, bands were detected with sizes corresponding to fibronectin, vitronectin, and unknown proteins, one of which was identical to the size of OPN. In a solid-phase binding assay we demonstrated that purified OPN binds specifically to α8β1-AP. Cell adhesion assays using K562 cells expressing α8β1 were used to confirm this result. Together with a recent report that anti-OPN antibodies disrupt kidney morphogenesis, our results suggest that interactions between OPN and integrin α8β1 may help regulate kidney development and other morphogenetic processes.
Resumo:
A distinct phosphodiesterasic activity (EC 3.1.4) was found in both mono- and dicotyledonous plants that catalyzes the hydrolytic breakdown of ADPglucose (ADPG) to produce equimolar amounts of glucose-1-phosphate and AMP. The enzyme responsible for this activity, referred to as ADPG pyrophosphatase (AGPPase), was purified over 1,100-fold from barley leaves and subjected to biochemical characterization. The calculated Keq′ (modified equilibrium constant) value for the ADPG hydrolytic reaction at pH 7.0 and 25°C is 110, and its standard-state free-energy change value (ΔG′) is −2.9 kcal/mol (1 kcal = 4.18 kJ). Kinetic analyses showed that, although AGPPase can hydrolyze several low-molecular weight phosphodiester bond-containing compounds, ADPG proved to be the best substrate (Km = 0.5 mM). Pi and phosphorylated compounds such as 3-phosphoglycerate, PPi, ATP, ADP, NADP+, and AMP are inhibitors of AGPPase. Subcellular localization studies revealed that AGPPase is localized exclusively in the plastidial compartment of cultured cells of sycamore (Acer pseudoplatanus L.), whereas it occurs both inside and outside the plastid in barley endosperm. In this paper, evidence is presented that shows that AGPPase, whose activity declines concomitantly with the accumulation of starch during development of sink organs, competes with starch synthase (ADPG:1,4-α-d-glucan 4-α-d-glucosyltransferase; EC 2.4.1.21) for ADPG, thus markedly blocking the starch biosynthesis.
Resumo:
sqv (squashed vulva) genes comprise a set of eight independent loci in Caenorhabditis elegans required zygotically for the invagination of vulval epithelial cells and maternally for normal oocyte formation and embryogenesis. Sequencing of sqv-3, sqv-7, and sqv-8 suggested a role for the encoded proteins in glycolipid or glycoprotein biosynthesis. Using a combination of in vitro analysis of SQV enzymatic activities, sqv+-mediated rescue of vertebrate cell lines, and biochemical characterization of sqv mutants, we show that sqv-3, -7, and -8 all affect the biosynthesis of glycosaminoglycans and therefore compromise the function of one specific class of glycoconjugates, proteoglycans. These findings establish the importance of proteoglycans and their associated glycosaminoglycans in epithelial morphogenesis and patterning during C. elegans development.