981 resultados para B STRAINS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compares in vitro antimicrobial resistance development between strains of Staphylococcus aureus including newly described community-acquired methicillin-resistant strains (CA-MRSA). High-level resistance developed in all strains of S. aureus after exposure to rifampicin and gentamicin and in some strains after fusidic acid exposure, independent of methicillin resistance phenotype. Resistance did not develop after exposure to clindamycin, cotrimoxazole, ciprofloxacin, linezolid, or vancomycin. These results have important implications for therapy of CA-MRSA infections. (C) 2004 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing reports of the appearance of novel nonmultiresistant methicillin-resistant Staphylococcus aureus MRSA (MRSA) strains in the community and of the spread of hospital MRSA strains into the community are cause for public health concern. We conducted two national surveys of unique isolates of S. aureus from clinical specimens collected from nonhospitalized patients commencing in 2000 and 2002, respectively. A total of 11.7% of 2,498 isolates from 2000 and 15.4% of 2,486 isolates from 2002 were MRSA. Approximately 54% of the MRSA isolates were nonmultiresistant (resistant to less than three of nine antibiotics) in both surveys. The majority of multiresistant MRSA isolates in both surveys belonged to two strains (strains AUS-2 and AUS-3), as determined by pulsed-field gel electrophoresis (PFGE) and resistogram typing. The 3 AUS-2 isolates and 10 of the 11 AUS-3 isolates selected for multilocus sequence typing (MLST) and staphylococcal chromosomal cassette mec (SCCmec) analysis were ST239-MRSA-III (where ST is the sequence type) and thus belonged to the same clone as the eastern Australian MRSA strain of the 1980s, which spread internationally. Four predominant clones of novel nonmultiresistant MRSA were identified by PFGE, MLST, and SCCmec analysis: ST22-MRSA-IV (strain EMRSA-15), ST1-MRSA-IV (strain WA-1), ST30-MRSA-IV (strain SWP), and ST93-MRSA-IV (strain Queensland). The last three clones are associated with community acquisition. A total of 14 STs were identified in the surveys, including six unique clones of novel nonmultiresistant MRSA, namely, STs 73, 93, 129, 75, and 80sIv and a new ST. SCCmec types IV and V were present in diverse genetic backgrounds. These findings provide support for the acquisition of SCCmec by multiple lineages of S. aureus. They also confirm that both hospital and community strains of MRSA are now common in nonhospitalized patients throughout Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vancomycin is the preferred parenteral antibiotic for the treatment of all methicillin-resistant Staphylococcus aureus (MRSA) infections, including the newly emerging community-associated MRSA (CA-MRSA) infections. Vancomycin-intermediate nosocomial MRSA strains have developed in vitro and in vivo after exposure to vancomycin. The aim of this study was to determine whether daily serial passage of CA-MRSA strains onto vancomycin-supplemented agar selects for the development of vancomycin resistance. Twelve clinical isolates of the six commonest Australian and US strains of CA-MRSA were serially passaged daily for 25 days onto brain-heart infusion agar plates supplemented with 4 mu g/mL vancomycin and then subcultured for a further 15 days onto antibiotic-free agar to assess the stability of the resistance phenotype. Minimum inhibitory concentrations (MICs) were determined by standard Etest every 5 days from day 0 to day 40. Serial passaging resulted in increased MICs in all strains but the rises were modest, with an increase of < 2 doubling dilutions. All strains remained vancomycin Susceptible throughout the experiment according to Clinical Laboratory Standards Institute criteria. Crown Copyright (c) 2005 Published by Elsevier B.V. on behalf of International Society of Chemotherapy. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immune effects of fowlpox virus (FPV) field isolates and vaccine strains were evaluated in chickens infected at the age of 1 day and 6 weeks. The field isolates and the obsolete vaccine strain (FPV S) contained integrated reticuloendotheliosis virus (REV) provirus, while the current vaccine strain (FPVST) carries only REV LTR sequences. An indirect antibody ELISA was used to measure the FPV-specific antibody response. The non-specific humoral response was evaluated by injection of two T-cell-dependent antigens, sheep red blood cells (SRBC) and bovine serum albumin (BSA). There was no significant difference in the antibody response to FPV between chickens infected with FPV various isolates and strains at either age. In contrast, antibody responses to both SRBC and BSA were significantly lower in 1-day-old chickens inoculated with field isolates and FPV S at 2-3 weeks post-inoculation. Furthermore, cell-mediated immune (CMI) responses measured by in vitro lymphocyte proliferation assay and in vivo using a PHA-P skin test were significantly depressed in chickens inoculated with field isolates and FPV S at the same periods. In addition, thymus and bursal weights were lower in infected chickens. These immunosuppressive effects were not observed in chickens inoculated with the current vaccine strain, FPVST, at any time. The results of this study suggest that virulent field isolates and FPV S have immunosuppressive effects when inoculated into young chickens, which appeared in the first 3 weeks post infection. REV integrated in the FPV field isolates and FPV S may have played a central role in the development of immunosuppression. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microelectronic systems are multi-material, multi-layer structures, fabricated and exposed to environmental stresses over a wide range of temperatures. Thermal and residual stresses created by thermal mismatches in films and interconnections are a major cause of failure in microelectronic devices. Due to new device materials, increasing die size and the introduction of new materials for enhanced thermal management, differences in thermal expansions of various packaging materials have become exceedingly important and can no longer be neglected. X-ray diffraction is an analytical method using a monochromatic characteristic X-ray beam to characterize the crystal structure of various materials, by measuring the distances between planes in atomic crystalline lattice structures. As a material is strained, this interplanar spacing is correspondingly altered, and this microscopic strain is used to determine the macroscopic strain. This thesis investigates and describes the theory and implementation of X-ray diffraction in the measurement of residual thermal strains. The design of a computer controlled stress attachment stage fully compatible with an Anton Paar heat stage will be detailed. The stress determined by the diffraction method will be compared with bimetallic strip theory and finite element models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccolithophorid algae, particularly Emiliania huxleyi, are prolific biomineralisers that, under many conditions, dominate communities of marine eukaryotic plankton. Their ability to photosynthesise and form calcified scales (coccoliths) has placed them in a unique position in the global carbon cycle. Contrasting reports have been made with regards to the response of E. huxleyi to ocean acidification. Therefore, there is a pressing need to further determine the fate of this key organism in a rising CO2 world. In this paper, we investigate the phenotype of newly isolated, genetically diverse, strains of E. huxleyi from UK Ocean Acidification Research Programme (UKOA) cruises around the British Isles, the Arctic, and the Southern Ocean. We find a continuum of diversity amongst the physiological and photosynthetic parameters of different strains of E. huxleyi morphotype A under uniform, ambient conditions imposed in the laboratory. This physiology is best explained by adaptation to carbonate chemistry in the former habitat rather than being prescribed by genetic fingerprints such as the coccolithophore morphology motif (CMM). To a first order, the photosynthetic capacity of each strain is a function of both aqueous CO2 availability, and calcification rate, suggestive of a link between carbon concentrating ability and calcification. The calcification rate of each strain is related linearly to the natural environmental [CO32−] at the site of isolation, but a few exceptional strains display low calcification rates at the highest [CO32−] when calcification is limited by low CO2 availability and/or a lack of a carbon concentrating mechanism. We present O2-electrode measurements alongside coccolith oxygen isotopic composition and the uronic acid content (UAC) of the coccolith associated polysaccharide (CAP), that act as indirect tools to show the differing carbon concentrating ability of the strains. The environmental selection revealed amongst our recently isolated strain collection points to the future outcompetition of the slow growing morphotypes B/C and R (which also lack a carbon concentrating mechanism) by more rapidly photosynthesising, and lightly calcified strains of morphotype A but with their rate of calcification highly dependent on the surface ocean saturation state. The mechanism of E. huxleyi response to carbonate chemistry in the modern ocean appears to be selection from a continuum of phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccolithophorid algae, particularly Emiliania huxleyi, are prolific biomineralisers that, under many conditions, dominate communities of marine eukaryotic plankton. Their ability to photosynthesise and form calcified scales (coccoliths) has placed them in a unique position in the global carbon cycle. Contrasting reports have been made with regards to the response of E. huxleyi to ocean acidification. Therefore, there is a pressing need to further determine the fate of this key organism in a rising CO2 world. In this paper, we investigate the phenotype of newly isolated, genetically diverse, strains of E. huxleyi from UK Ocean Acidification Research Programme (UKOA) cruises around the British Isles, the Arctic, and the Southern Ocean. We find a continuum of diversity amongst the physiological and photosynthetic parameters of different strains of E. huxleyi morphotype A under uniform, ambient conditions imposed in the laboratory. This physiology is best explained by adaptation to carbonate chemistry in the former habitat rather than being prescribed by genetic fingerprints such as the coccolithophore morphology motif (CMM). To a first order, the photosynthetic capacity of each strain is a function of both aqueous CO2 availability, and calcification rate, suggestive of a link between carbon concentrating ability and calcification. The calcification rate of each strain is related linearly to the natural environmental [CO32−] at the site of isolation, but a few exceptional strains display low calcification rates at the highest [CO32−] when calcification is limited by low CO2 availability and/or a lack of a carbon concentrating mechanism. We present O2-electrode measurements alongside coccolith oxygen isotopic composition and the uronic acid content (UAC) of the coccolith associated polysaccharide (CAP), that act as indirect tools to show the differing carbon concentrating ability of the strains. The environmental selection revealed amongst our recently isolated strain collection points to the future outcompetition of the slow growing morphotypes B/C and R (which also lack a carbon concentrating mechanism) by more rapidly photosynthesising, and lightly calcified strains of morphotype A but with their rate of calcification highly dependent on the surface ocean saturation state. The mechanism of E. huxleyi response to carbonate chemistry in the modern ocean appears to be selection from a continuum of phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7%) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7% - 49.5% identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin and spanins) and shows 29-98% homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60°C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest the AP3 phage is a promising potent agent against bacteria belonging to most common B. cenocepacia IIIA lineage strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coagulase-negative staphylococci, particularly Staphylococcus epidermidis , can be regarded as potential reservoirs of resistance genes for pathogenic strains, e.g., Staphylococcus aureus . The aim of this study was to assess the prevalence of different resistance phenotypes to macrolide, lincosamide, and streptogramins B (MLSB) antibiotics among erythromycin-resistant S. epidermidis, together with the evaluation of genes promoting the following different types of MLSB resistance: ermA, ermB, ermC, msrA, mphC, and linA/A’. Susceptibility to spiramycin was also examined. Among 75 erythromycin-resistant S. epidermidis isolates, the most frequent phenotypes were macrolides and streptogramins B (MSB) and constitutive MLSB (cMLSB). Moreover, all strains with the cMLSB phenotype and the majority of inducible MLSB (iMLSB) isolates were resistant to spiramycin, whereas strains with the MSB phenotype were sensitive to this antibiotic. The D-shape zone of inhibition around the clindamycin disc near the spiramycin disc was found for some spiramycin-resistant strains with the iMLSB phenotype, suggesting an induction of resistance to clindamycin by this 16-membered macrolide. The most frequently isolated gene was ermC, irrespective of the MLSB resistance phenotype, whereas the most often noted gene combination was ermC, mphC, linA/A’. The results obtained showed that the genes responsible for different mechanisms of MLSB resistance in S. epidermidis generally coexist, often without the phenotypic expression of each of them.