979 resultados para Auditory-visual teaching


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four experiments examined how people operate on memory representations of familiar songs. The tasks were similar to those used in studies of visual imagery. In one task, subjects saw a one word lyric from a song and then saw a second lyric; then they had to say if the second lyric was from the same song as the first. In a second task, subjects mentally compared pitches of notes corresponding to song lyrics. In both tasks, reaction time increased as a function of the distance in beats between the two lyrics in the actual song, and in some conditions reaction time increased with the starting beat of the earlier lyric. Imagery instructions modified the main results somewhat in the first task, but not in the second, much harder task. The results suggest that song representations have temporal-like characteristics. (PsycINFO Database Record (c) 2012 APA, all rights reserved)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and effective demonstration to help students comprehend phase diagrams and understand phase equilibria and transformations is created using common chemical solvents available in the laboratory. Common misconceptions surrounding phase diagram operations, such as components versus phases, reversibility of phase transformations, and the lever rule are addressed. Three different binary liquid mixtures of varying compatibility create contrastive phase equilibrium cases, where colorful dyes selectively dissolved in each of corresponding phases allow for quick and unambiguous perceptions of solubility limit and phase transformations. Direct feedback and test scores from a group of students show evidence of the effectiveness of the visual and active teaching tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experience shows that in teaching the pronunciation of a foreign language, it is the native syllable stereotype that resists correction most strongly. This is because the syllable is the basic unit of the perception and production of speech, and syllabic production is highly automatic and to some degree determines the prosody of speech at all levels: accent, rhythm, phrase, etc. The results of psycho-physiological studies show that the human acoustic analyser is a typical contemplator organ and new acoustic qualities are perceived through their inclusion into the already existing system of values characteristic to the mother tongue. This results in the adaptation of the perception and so production of foreign speech to native patterns. The less conscious the perception of the unit and the more 'primitive' its status, the greater the degree of its auditory assimilation, and the syllable is certainly among the less controllable linguistic units. The group carried out a complex investigation of the French and Russian languages at the level of syllable realisation, focusing on the stressed syllable of both open and closed types. The useful acoustic characteristics of the French/Russian syllable pattern were determined through identifying a typical syllable pattern within the system of each of the two languages, comparing these patterns to establish their contrasting features, and observing and systematising deviations from the pattern typical of the French/Russian language teaching situation. The components of the syllable pattern shown to need particular attention in teaching French pronunciation to Russian native speakers were intensity, fundamental frequency, and duration. The group then developed a method of correction which combines the auditory and visual canals of sound signal perception and tested this method with groups of Russian students of different levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The auditory cortex is anatomically segregated into a central core and a peripheral belt region, which exhibit differences in preference to bandpassed noise and in temporal patterns of response to acoustic stimuli. While it has been shown that visual stimuli can modify response magnitude in auditory cortex, little is known about differential patterns of multisensory interactions in core and belt. Here, we used functional magnetic resonance imaging and examined the influence of a short visual stimulus presented prior to acoustic stimulation on the spatial pattern of blood oxygen level-dependent signal response in auditory cortex. Consistent with crossmodal inhibition, the light produced a suppression of signal response in a cortical region corresponding to the core. In the surrounding areas corresponding to the belt regions, however, we found an inverse modulation with an increasing signal in centrifugal direction. Our data suggest that crossmodal effects are differentially modulated according to the hierarchical core-belt organization of auditory cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auditory neuroscience has not tapped fMRI's full potential because of acoustic scanner noise emitted by the gradient switches of conventional echoplanar fMRI sequences. The scanner noise is pulsed, and auditory cortex is particularly sensitive to pulsed sounds. Current fMRI approaches to avoid stimulus-noise interactions are temporally inefficient. Since the sustained BOLD response to pulsed sounds decreases with repetition rate and becomes minimal with unpulsed sounds, we developed an fMRI sequence emitting continuous rather than pulsed gradient sound by implementing a novel quasi-continuous gradient switch pattern. Compared to conventional fMRI, continuous-sound fMRI reduced auditory cortex BOLD baseline and increased BOLD amplitude with graded sound stimuli, short sound events, and sounds as complex as orchestra music with preserved temporal resolution. Response in subcortical auditory nuclei was enhanced, but not the response to light in visual cortex. Finally, tonotopic mapping using continuous-sound fMRI demonstrates that enhanced functional signal-to-noise in BOLD response translates into improved spatial separability of specific sound representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project proposes a module for teaching visual composition within the context of a written composition course. Drawing from process writing theory, critical pedagogy, and photo-elicitation, “Composing In Words And Images” gives composition teachers a module and direct instruction for the incorporation of critical visual composition studies in their writing classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulation tools aid in learning neuroscience by providing the student with an interactive environment to carry out simulated experiments and test hypotheses. The field of neuroscience is well suited for the use of simulation tools since nerve cell signaling can be described by mathematical equations and solved by computer. Neural signaling entails the propagation of electrical current along nerve membrane and transmission to neighboring neurons through synaptic connections. Action potentials and synaptic transmission can be simulated and results displayed for visualization and analysis. The neurosimulator SNNAP (Simulator for Neural Networks and Action Potentials) is a simulation environment that provides users with editors for model building, simulator engine and visual display editor. This paper presents several modeling examples that illustrate some of the capabilities and features of SNNAP. First, the Hodgkin-Huxley (HH) model is presented and the threshold phenomenon is illustrated. Second, small neural networks are described with HH models using various synaptic connections available with SNNAP. Synaptic connections may be modulated through facilitation or depression with SNNAP. A study of vesicle pool dynamics is presented using an AMPA receptor model. Finally, a central pattern generator model of the Aplysia feeding circuit is illustrated as an example of a complex network that may be studied with SNNAP. Simulation code is provided for each case study described and tasks are suggested for further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simbrain is a visually-oriented framework for building and analyzing neural networks. It emphasizes the analysis of networks which control agents embedded in virtual environments, and visualization of the structures which occur in the high dimensional state spaces of these networks. The program was originally intended to facilitate analysis of representational processes in embodied agents, however it is also well suited to teaching neural networks concepts to a broader audience than is traditional for neural networks courses. Simbrain was used to teach a course at a new university, UC Merced, in its inaugural year. Experiences from the course and sample lessons are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Many patients with Posttraumatic Stress Disorder (PTSD) feel overwhelmed in situations with high levels of sensory input, as in crowded situations with complex sensory characteristics. These difficulties might be related to subtle sensory processing deficits similar to those that have been found for sounds in electrophysiological studies. METHOD: Visual processing was investigated with functional magnetic resonance imaging in trauma-exposed participants with (N = 18) and without PTSD (N = 21) employing a picture-viewing task. RESULTS: Activity observed in response to visual scenes was lower in PTSD participants 1) in the ventral stream of the visual system, including striate and extrastriate, inferior temporal, and entorhinal cortices, and 2) in dorsal and ventral attention systems (P < 0.05, FWE-corrected). These effects could not be explained by the emotional salience of the pictures. CONCLUSIONS: Visual processing was substantially altered in PTSD in the ventral visual stream, a component of the visual system thought to be responsible for object property processing. Together with previous reports of subtle auditory deficits in PTSD, these findings provide strong support for potentially important sensory processing deficits, whose origins may be related to dysfunctional attention processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. With the global increase in CO2 emissions, there is a pressing need for studies aimed at understanding the effects of ocean acidification on marine ecosystems. Several studies have reported that exposure to CO2 impairs chemosensory responses of juvenile coral reef fishes to predators. Moreover, one recent study pointed to impaired responses of reef fish to auditory cues that indicate risky locations. These studies suggest that altered behaviour following exposure to elevated CO2 is caused by a systemic effect at the neural level. 2. The goal of our experiment was to test whether juvenile damselfish Pomacentrus amboinensis exposed to different levels of CO2 would respond differently to a potential threat, the sight of a large novel coral reef fish, a spiny chromis, Acanthochromis polyancanthus, placed in a watertight bag. 3. Juvenile damselfish exposed to 440 (current day control), 550 or 700 µatm CO2 did not differ in their response to the chromis. However, fish exposed to 850 µatm showed reduced antipredator responses; they failed to show the same reduction in foraging, activity and area use in response to the chromis. Moreover, they moved closer to the chromis and lacked any bobbing behaviour typically displayed by juvenile damselfishes in threatening situations. 4. Our results are the first to suggest that response to visual cues of risk may be impaired by CO2 and provide strong evidence that the multi-sensory effects of CO2 may stem from systematic effects at the neural level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desordens da ansiedade, especialmente a agorafobia e a desordem do pânico foram associadas a anormalidades das funções vestibulares. Evidências de que o controle do equilíbrio pode exigir habilidades atencionais também foram relatadas. Utilizando o medo de altura como modelo clínico onde sintomas ansiosos coexistem com anormalidades com a percepção espacial e controle do equilíbrio, este estudo investigou o desempenho em testes de atenção visual em voluntários normais com altos e baixos escores obtidos do Questionário de Acrofobia. O teste de rastreio visual foi realizado em 30 indivíduos (15 em cada grupo) enquanto ouviam dois tipos diferentes de estímulos auditivos. Na condição volume um som de 900 Hz era apresentado em ambos ouvidos durante 2 segundos seguidos de mais 2 segundos de silêncio. Na condição balanço , o mesmo som era apresentado durante 2 segundos ao ouvido direito seguido por 2 segundos ao ouvido esquerdo. Estímulos auditivos de movimento provocaram maior desconforto em ambos os grupos, mas nos indivíduos com maiores escores de acrofobia estes estímulos foram associados a um pior desempenho no teste visual. Embora muito limitado pela amostra experimental, este estudo sugere que o medo de altura pode estar associado à dependência visual para manutenção do equilíbrio e que poderia piorar o desempenho nos testes visuais devido à competição dos recursos neuro-cognitivos. Implicações experimentais e clínicas destes achados preliminares exigem outras pesquisas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desordens da ansiedade, especialmente a agorafobia e a desordem do pânico foram associadas a anormalidades das funções vestibulares. Evidências de que o controle do equilíbrio pode exigir habilidades atencionais também foram relatadas. Utilizando o medo de altura como modelo clínico onde sintomas ansiosos coexistem com anormalidades com a percepção espacial e controle do equilíbrio, este estudo investigou o desempenho em testes de atenção visual em voluntários normais com altos e baixos escores obtidos do Questionário de Acrofobia. O teste de rastreio visual foi realizado em 30 indivíduos (15 em cada grupo) enquanto ouviam dois tipos diferentes de estímulos auditivos. Na condição volume um som de 900 Hz era apresentado em ambos ouvidos durante 2 segundos seguidos de mais 2 segundos de silêncio. Na condição balanço , o mesmo som era apresentado durante 2 segundos ao ouvido direito seguido por 2 segundos ao ouvido esquerdo. Estímulos auditivos de movimento provocaram maior desconforto em ambos os grupos, mas nos indivíduos com maiores escores de acrofobia estes estímulos foram associados a um pior desempenho no teste visual. Embora muito limitado pela amostra experimental, este estudo sugere que o medo de altura pode estar associado à dependência visual para manutenção do equilíbrio e que poderia piorar o desempenho nos testes visuais devido à competição dos recursos neuro-cognitivos. Implicações experimentais e clínicas destes achados preliminares exigem outras pesquisas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Brn-3 subfamily of POU–domain transcription factor genes consists of three highly homologous members—Brn-3a, Brn-3b, and Brn-3c—that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the Brn-3a and Brn-3b proteins are found only in subsets of spiral and vestibular ganglion neurons. Mice carrying a targeted deletion of the Brn-3c gene are deaf and have impaired balance. These defects reflect a complete loss of auditory and vestibular hair cells during the late embryonic and early postnatal period and a secondary loss of spiral and vestibular ganglion neurons. Together with earlier work demonstrating a loss of trigeminal ganglion neurons and retinal ganglion cells in mice carrying targeted disruptions in the Brn-3a and Brn-3b genes, respectively, the Brn-3c phenotype reported here demonstrates that each of the Brn-3 genes plays distinctive roles in the somatosensory, visual, and auditory/vestibular systems.