992 resultados para Atmospheric Chemistry, Ozone, Nitrogen oxides, Marine boundary layer, Photochemistry
Resumo:
Measurements of NOx within the snowpack at Summit, Greenland were carried out from June 2008 to July 2010, using a novel system to sample firn air with minimal disruption of the snowpack. These long-term measurements were motivated by the need of improving the representation of air-snow interactions in global models. Results indicated that the NOx budget within the snowpack was on the order of 550 pptv as maximum, and was constituted primarily for NO2. NOx production was observed within the first 50 cm of the snowpack during the sunlight season between February and August. Presence of NOx at larger depths was attributed to high speed wind and vertical transport processes. Production of NO correlated with the seasonal incoming radiation profile, while NO2 maximum was observed in April. These measurements constitute the larger data set of NOx within the firn and will improve the representation of processes driving snow photochemistry at Summit.
Resumo:
This work investigates the subcritical spatial transition in the swept Hiemenz boundary layer by means of direct numerical simulations (DNS). A pair of steady co-rotating vortices located at the attachment line is enforced as a primary disturbance leading to streaks which are stable. A small secondary, time-dependent disturbance interacts with these streaks such that instability and breakdown to turbulence may occur. The instability only occurs for a certain band of secondary disturbance frequencies. Positive secondary instability growth rates could be observed for Reynolds numbers as low as , whereas the linear critical Reynolds number is. Uniform wall suction is shown to stabilise this transition mechanism, analogously to results from linear stability theory. The effects of suction on the formation of primary streaks and on the secondary growth rate are decoupled. For streaks of different suction whose amplitude is held constant by adjusting the Reynolds number, the suction is shown to increase the growth rate of the secondary instability. The stabilising influence of wall suction consists in decreasing the streak amplitude only. Depending on the Reynolds number and the suction strength, breakdown may either occur locally and may be convected along the far-field streamlines, or occur globally and cover broad regions in the downstream direction.
Linear global instability of non-orthogonal incompressible swept attachment-line boundary layer flow
Resumo:
Instability of the orthogonal swept attachment line boundary layer has received attention by local1, 2 and global3–5 analysis methods over several decades, owing to the significance of this model to transition to turbulence on the surface of swept wings. However, substantially less attention has been paid to the problem of laminar flow instability in the non-orthogonal swept attachment-line boundary layer; only a local analysis framework has been employed to-date.6 The present contribution addresses this issue from a linear global (BiGlobal) instability analysis point of view in the incompressible regime. Direct numerical simulations have also been performed in order to verify the analysis results and unravel the limits of validity of the Dorrepaal basic flow7 model analyzed. Cross-validated results document the effect of the angle _ on the critical conditions identified by Hall et al.1 and show linear destabilization of the flow with decreasing AoA, up to a limit at which the assumptions of the Dorrepaal model become questionable. Finally, a simple extension of the extended G¨ortler-H¨ammerlin ODE-based polynomial model proposed by Theofilis et al.4 is presented for the non-orthogonal flow. In this model, the symmetries of the three-dimensional disturbances are broken by the non-orthogonal flow conditions. Temporal and spatial one-dimensional linear eigenvalue codes were developed, obtaining consistent results with BiGlobal stability analysis and DNS. Beyond the computational advantages presented by the ODE-based model, it allows us to understand the functional dependence of the three-dimensional disturbances in the non-orthogonal case as well as their connections with the disturbances of the orthogonal stability problem.
Resumo:
Typical streak computations present in the literature correspond to linear streaks or to small amplitude nonlinear streaks computed using DNS or nonlinear PSE. We use the Reduced Navier-Stokes (RNS) equations to compute the streamwise evolution of fully non-linear streaks with high amplitude in a laminar flat plate boundary layer. The RNS formulation provides Reynolds number independent solutions that are asymptotically exact in the limit $Re \gg 1$, it requires much less computational effort than DNS, and it does not have the consistency and convergence problems of the PSE. We present various streak computations to show that the flow configuration changes substantially when the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, that end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results.
Resumo:
Instability analysis of compressible orthogonal swept leading-edge boundary layer flow was performed in the context of BiGlobal linear theory. 1, 2 An algorithm was developed exploiting the sparsity characteristics of the matrix discretizing the PDE-based eigenvalue problem. This allowed use of the MUMPS sparse linear algebra package 3 to obtain a direct solution of the linear systems associated with the Arnoldi iteration. The developed algorithm was then applied to efficiently analyze the effect of compressibility on the stability of the swept leading-edge boundary layer and obtain neutral curves of this flow as a function of the Mach number in the range 0 ≤ Ma ≤ 1. The present numerical results fully confirmed the asymptotic theory results of Theofilis et al. 4 Up to the maximum Mach number value studied, it was found that an increase of this parameter reduces the critical Reynolds number and the range of the unstable spanwise wavenumbers.
Resumo:
En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.