911 resultados para Associative network theory


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The choice value and the testing process against the vigilance parameter, characteristic of ART Neural Network, are merged. Only, a single unique test is required to determine if a committed category node can represent the current input or not. Advantages of APT over ART are: 1-Avoid testing every committed category node before deciding to train a committed category node or a new node must be committed, 2-The vigilance parameter is fixed during training, and 3-The choice value parameter is eliminated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The difficulty behind Wireless Sensor Network deployments in industrial environments not only resides in the number of nodes or the communication protocols but also in the real location of the sensor nodes and the parameters to be monitored. Sensor soiling, high humidity and unreachable locations, among others, make real deployments a very difficult task to plan. Even though it is possible to find myriad approaches for floor planners and deployment tools in the state of the art, most of these problems are very difficult to model and foresee before actually deploying the network in the final scenario. This work shows two real deployments in food factories and how their problems are found and overcome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which accounts for input noise provided that a model of the noise process exists. In the limit where the noise process is small and symmetric it is shown, using the Laplace approximation, that this method adds an extra term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable, and sampling this jointly with the network’s weights, using a Markov chain Monte Carlo method, it is demonstrated that it is possible to infer the regression over the noiseless input. This leads to the possibility of training an accurate model of a system using less accurate, or more uncertain, data. This is demonstrated on both the, synthetic, noisy sine wave problem and a real problem of inferring the forward model for a satellite radar backscatter system used to predict sea surface wind vectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

What theoretical framework can help in building, maintaining and evaluating networked knowledge organization resources? Specifically, what theoretical framework makes sense of the semantic prowess of ontologies and peer-to-peer sys- tems, and by extension aids in their building, maintenance, and evaluation? I posit that a theoretical work that weds both for- mal and associative (structural and interpretive) aspects of knowledge organization systems provides that framework. Here I lay out the terms and the intellectual constructs that serve as the foundation for investigative work into experientialist classifi- cation theory, a theoretical framework of embodied, infrastructural, and reified knowledge organization. I build on the inter- pretive work of scholars in information studies, cognitive semantics, sociology, and science studies. With the terms and the framework in place, I then outline classification theory s critiques of classificatory structures. In order to address these cri- tiques with an experientialist approach an experientialist semantics is offered as a design commitment for an example: metadata in peer-to-peer network knowledge organization structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ventral premotor cortex (PMv) is believed to play a pivotal role in a multitude of visuomotor behaviors, such as sensory-guided goal-directed visuomotor transformations, arbitrary visuomotor mapping, and hyper-learnt visuomotor associations underlying automatic imitative tendencies. All these functions are likely carried out through the copious projections connecting PMv to the primary motor cortex (M1). Yet, causal evidence investigating the functional relevance of the PMv-M1 network remains elusive and scarce. In the studies reported in this thesis we addressed this issue using a transcranial magnetic stimulation (TMS) protocol called cortico-cortical paired associative stimulation (ccPAS), which relies on multisite stimulation to induce Hebbian spike-timing dependent plasticity (STDP) by repeatedly stimulating the pathway connecting two target areas to manipulate their connectivity. Firstly, we show that ccPAS protocols informed by both short- and long-latency PMv-M1 interactions effectively modulate connectivity between the two nodes. Then, by pre-activating the network to apply ccPAS in a state-dependent manner, we were able to selectively target specific functional visuo-motor pathways, demonstrating the relevance of PMv-M1 connectivity to arbitrary visuomotor mapping. Subsequently, we addressed the PMv-to-M1 role in automatic imitation, and demonstrated that its connectivity manipulation has a corresponding impact on automatic imitative tendencies. Finally, by combining dual-coil TMS connectivity assessments and ccPAS in young and elderly individuals, we traced effective connectivity of premotor-motor networks and tested their plasticity and relevance to manual dexterity and force in healthy ageing. Our findings provide unprecedent causal evidence of the functional role of the PMv-to-M1 network in young and elderly individuals. The studies presented in this thesis suggest that ccPAS can effectively modulate the strength of connectivity between targeted areas, and coherently manipulate a networks’ behavioral output. Results open new research prospects into the causal role of cortico-cortical connectivity, and provide necessary information to the development of clinical interventions based on connectivity manipulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the design and development of a dividing/phasing network for a compact switched-beam array antenna for Land-vehicle mobile satellite communications, The device is formed by a switched radial divider/combiner and 1-bit phase shifters and generates a sufficient number of beams for the proper satellite tracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about 0.8-0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement is found to be very good in the light that there is no fitting parameter in the model. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple percolation theory-based method for determination of the pore network connectivity using liquid phase adsorption isotherm data combined with a density functional theory (DFT)-based pore size distribution is presented in this article. The liquid phase adsorption experiments have been performed using eight different esters as adsorbates and microporous-mesoporous activated carbons Filtrasorb-400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The density functional theory (DFT)-based pore size distributions of the carbons were obtained using DFT analysis of argon adsorption data. The mean micropore network coordination numbers, Z, of the carbons were determined based on DR characteristic plots and fitted saturation capacities using percolation theory. Based on this method, the critical molecular sizes of the model compounds used in this study were also obtained. The incorporation of percolation concepts in the prediction of multicomponent adsorption equilibria is also investigated, and found to improve the performance of the ideal adsorbed solution theory (IAST) model for the large molecules utilized in this study. (C) 2002 Elsevier Science B.V. All rights reserved.