876 resultados para Artificial Intelligence, Constraint Programming, set variables, representation
Resumo:
Bayesian probabilistic analysis offers a new approach to characterize semantic representations by inferring the most likely feature structure directly from the patterns of brain activity. In this study, infinite latent feature models [1] are used to recover the semantic features that give rise to the brain activation vectors when people think about properties associated with 60 concrete concepts. The semantic features recovered by ILFM are consistent with the human ratings of the shelter, manipulation, and eating factors that were recovered by a previous factor analysis. Furthermore, different areas of the brain encode different perceptual and conceptual features. This neurally-inspired semantic representation is consistent with some existing conjectures regarding the role of different brain areas in processing different semantic and perceptual properties. © 2012 Springer-Verlag.
Resumo:
A practical machine-vision-based system is developed for fast detection of defects occurring on the surface of bottle caps. This system can be used to extract the circular region as the region of interests (ROI) from the surface of a bottle cap, and then use the circular region projection histogram (CRPH) as the matching features. We establish two dictionaries for the template and possible defect, respectively. Due to the requirements of high-speed production as well as detecting quality, a fast algorithm based on a sparse representation is proposed to speed up the searching. In the sparse representation, non-zero elements in the sparse factors indicate the defect's size and position. Experimental results in industrial trials show that the proposed method outperforms the orientation code method (OCM) and is able to produce promising results for detecting defects on the surface of bottle caps.
Resumo:
Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove an analogous result for inference in Naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and Naive Bayes networks are used in real applications of imprecise probability.
On the complexity of solving polytree-shaped limited memory influence diagrams with binary variables
Resumo:
Influence diagrams are intuitive and concise representations of structured decision problems. When the problem is non-Markovian, an optimal strategy can be exponentially large in the size of the diagram. We can avoid the inherent intractability by constraining the size of admissible strategies, giving rise to limited memory influence diagrams. A valuable question is then how small do strategies need to be to enable efficient optimal planning. Arguably, the smallest strategies one can conceive simply prescribe an action for each time step, without considering past decisions or observations. Previous work has shown that finding such optimal strategies even for polytree-shaped diagrams with ternary variables and a single value node is NP-hard, but the case of binary variables was left open. In this paper we address such a case, by first noting that optimal strategies can be obtained in polynomial time for polytree-shaped diagrams with binary variables and a single value node. We then show that the same problem is NP-hard if the diagram has multiple value nodes. These two results close the fixed-parameter complexity analysis of optimal strategy selection in influence diagrams parametrized by the shape of the diagram, the number of value nodes and the maximum variable cardinality.
Resumo:
Credal networks are graph-based statistical models whose parameters take values on a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The result of inferences with such models depends on the irrelevance/independence concept adopted. In this paper, we study the computational complexity of inferences under the concepts of epistemic irrelevance and strong independence. We strengthen complexity results by showing that inferences with strong independence are NP-hard even in credal trees with ternary variables, which indicates that tractable algorithms, including the existing one for epistemic trees, cannot be used for strong independence. We prove that the polynomial time of inferences in credal trees under epistemic irrelevance is not likely to extend to more general models, because the problem becomes NP-hard even in simple polytrees. These results draw a definite line between networks with efficient inferences and those where inferences are hard, and close several open questions regarding the computational complexity of such models.
Resumo:
This paper investigates a representation language with flexibility inspired by probabilistic logic and compactness inspired by relational Bayesian networks. The goal is to handle propositional and first-order constructs together with precise, imprecise, indeterminate and qualitative probabilistic assessments. The paper shows how this can be achieved through the theory of credal networks. New exact and approximate inference algorithms based on multilinear programming and iterated/loopy propagation of interval probabilities are presented; their superior performance, compared to existing ones, is shown empirically.
Resumo:
This paper explores semi-qualitative probabilistic networks (SQPNs) that combine numeric and qualitative information. We first show that exact inferences with SQPNs are NPPP-Complete. We then show that existing qualitative relations in SQPNs (plus probabilistic logic and imprecise assessments) can be dealt effectively through multilinear programming. We then discuss learning: we consider a maximum likelihood method that generates point estimates given a SQPN and empirical data, and we describe a Bayesian-minded method that employs the Imprecise Dirichlet Model to generate set-valued estimates.
Resumo:
Depending on the representation setting, different combination rules have been proposed for fusing information from distinct sources. Moreover in each setting, different sets of axioms that combination rules should satisfy have been advocated, thus justifying the existence of alternative rules (usually motivated by situations where the behavior of other rules was found unsatisfactory). These sets of axioms are usually purely considered in their own settings, without in-depth analysis of common properties essential for all the settings. This paper introduces core properties that, once properly instantiated, are meaningful in different representation settings ranging from logic to imprecise probabilities. The following representation settings are especially considered: classical set representation, possibility theory, and evidence theory, the latter encompassing the two other ones as special cases. This unified discussion of combination rules across different settings is expected to provide a fresh look on some old but basic issues in information fusion.
Resumo:
Possibilistic answer set programming (PASP) unites answer set programming (ASP) and possibilistic logic (PL) by associating certainty values with rules. The resulting framework allows to combine both non-monotonic reasoning and reasoning under uncertainty in a single framework. While PASP has been well-studied for possibilistic definite and possibilistic normal programs, we argue that the current semantics of possibilistic disjunctive programs are not entirely satisfactory. The problem is twofold. First, the treatment of negation-as-failure in existing approaches follows an all-or-nothing scheme that is hard to match with the graded notion of proof underlying PASP. Second, we advocate that the notion of disjunction can be interpreted in several ways. In particular, in addition to the view of ordinary ASP where disjunctions are used to induce a non-deterministic choice, the possibilistic setting naturally leads to a more epistemic view of disjunction. In this paper, we propose a semantics for possibilistic disjunctive programs, discussing both views on disjunction. Extending our earlier work, we interpret such programs as sets of constraints on possibility distributions, whose least specific solutions correspond to answer sets.
Resumo:
Many problems in artificial intelligence can be encoded as answer set programs (ASP) in which some rules are uncertain. ASP programs with incorrect rules may have erroneous conclusions, but due to the non-monotonic nature of ASP, omitting a correct rule may also lead to errors. To derive the most certain conclusions from an uncertain ASP program, we thus need to consider all situations in which some, none, or all of the least certain rules are omitted. This corresponds to treating some rules as optional and reasoning about which conclusions remain valid regardless of the inclusion of these optional rules. While a version of possibilistic ASP (PASP) based on this view has recently been introduced, no implementation is currently available. In this paper we propose a simulation of the main reasoning tasks in PASP using (disjunctive) ASP programs, allowing us to take advantage of state-of-the-art ASP solvers. Furthermore, we identify how several interesting AI problems can be naturally seen as special cases of the considered reasoning tasks, including cautious abductive reasoning and conformant planning. As such, the proposed simulation enables us to solve instances of the latter problem types that are more general than what current solvers can handle.
Resumo:
The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.