951 resultados para Approximation en probabilité
Resumo:
*This research was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant N00014-96-1-1003
Resumo:
* Part of this work was done while the second author was on a visit at Tel Aviv University in March 2001
Resumo:
* This work has been supported by the Office of Naval Research Contract Nr. N0014-91-J1343, the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation grants DMS-0221642 and DMS-0200665, the Deutsche Forschungsgemeinschaft grant SFB 401, the IHP Network “Breaking Complexity” funded by the European Commission and the Alexan- der von Humboldt Foundation.
Resumo:
We consider the problem of minimizing the max of two convex functions from both approximation and sensitivity point of view.This lead up to study the epiconvergence of a sequence of level sums of convex functions and the related dual problems.
Resumo:
Various combinatorial problems are effectively modelled in terms of (0,1) matrices. Origins are coming from n-cube geometry, hypergraph theory, inverse tomography problems, or directly from different models of application problems. Basically these problems are NP-complete. The paper considers a set of such problems and introduces approximation algorithms for their solutions applying Lagragean relaxation and related set of techniques.
Resumo:
2000 Mathematics Subject Classification: 26A33 (primary), 35S15 (secondary)
Resumo:
2000 Mathematics Subject Classification: 26A33 (primary), 35S15
Resumo:
2000 Mathematics Subject Classification: 46B03
Resumo:
2010 Mathematics Subject Classification: 41A25, 41A10.
Resumo:
ACM Computing Classification System (1998): G.1.2.
Resumo:
The deviations of some entire functions of exponential type from real-valued functions and their derivatives are estimated. As approximation metrics we use the Lp-norms and power variations on R. Theorems presented here correspond to the Ganelius and Popov results concerning the one-sided trigonometric approximation of periodic functions (see [4, 5 and 8]). Some related facts were announced in [2, 3, 6 and 7].
Resumo:
We introduce a modification of the familiar cut function by replacing the linear part in its definition by a polynomial of degree p + 1 obtaining thus a sigmoid function called generalized cut function of degree p + 1 (GCFP). We then study the uniform approximation of the (GCFP) by smooth sigmoid functions such as the logistic and the shifted logistic functions. The limiting case of the interval-valued Heaviside step function is also discussed which imposes the use of Hausdorff metric. Numerical examples are presented using CAS MATHEMATICA.
Resumo:
AMS Subject Classification 2010: 41A25, 41A35, 41A40, 41A63, 41A65, 42A38, 42A85, 42B10, 42B20
Resumo:
MSC 2010: 41A25, 41A35
Resumo:
2000 Mathematics Subject Classification: 26E25, 41A35, 41A36, 47H04, 54C65.