998 resultados para Antiparasitic treatment
Resumo:
In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.
Resumo:
Osteoarthritis is characterized by degenerative alterations of articular cartilage including both the degradation of extracellular matrix and the death of chondrocytes. The PI3K/Akt pathway has been demonstrated to involve in both processes. Inhibition of its downstream target NF-kB reduces the degradation of extracellular matrix via decreased production of matrix metalloproteinases while inhibition of mTOR increased autophagy to reduce chondrocyte death. However, mTOR feedback inhibits the activity of the PI3K/Akt pathway and inhibition of mTOR could result in increased activity of the PI3K/Akt/NF-kB pathway. We proposed that the use of dual inhibitors of PI3K and mTOR could be a promising approach to more efficiently inhibit the PI3K/Akt pathway than rapamycin or PI3K inhibitor alone and produce better treatment outcome.
Resumo:
In this study available solid tire wastes in Bangladesh were characterized through proximate and ultimate analyses, gross calorific values and thermogravimetric analysis to investigate their suitability as feedstock for thermal recycling by pyrolysis technology. A new approach in heating system, fixedbed fire-tube heating pyrolysis reactor has been designed and fabricated for the recovery of liquid hydrocarbons from solid tire wastes. The tire wastes were pyrolysed in the internally heated fixed-bed fire-tube heating reactor and maximum liquid yield of 46-55 wt% of solid tire waste was obtained at a temperature of 475 oC, feed size 4 cm3, with a residence time of 5 s under N2 atmosphere. The liquid products were characterized by physical properties, elemental analysis, FT-IR, 1H-NMR, GC MS techniques and distillation. The results show that the liquid products are comparable to petroleum fuels whereas fractional distillations and desulphurization are essential to be used as alternative for diesel engine fuels.
Resumo:
We hypothesised that a potentially disease-modifying osteoarthritis (OA) drug such as hyaluronic acid (HA) given in combination with anti-inflammatory signalling agents such as mitogen-activated protein kinase kinase–extracellular signal-regulated kinase (MEK-ERK) signalling inhibitor (U0126) could result in additive or synergistic effects on preventing the degeneration of articular cartilage. Chondrocyte differentiation and hypertrophy were evaluated using human OA primary cells treated with either HA or U0126, or the combination of HA + U0126. Cartilage degeneration in menisectomy (MSX) induced rat OA model was investigated by intra-articular delivery of either HA or U0126, or the combination of HA + U0126. Histology, immunostaining, RT-qPCR, Western blotting and zymography were performed to assess the expression of cartilage matrix proteins and hypertrophic markers. Phosphorylated ERK (pERK)1/2-positive chondrocytes were significantly higher in OA samples compared with those in healthy control suggesting the pathological role of that pathway in OA. It was noted that HA + U0126 significantly reduced the levels of pERK, chondrocyte hypertrophic markers (COL10 and RUNX2) and degenerative markers (ADAMTs5 and MMP-13), however, increased the levels of chondrogenic markers (COL2) compared to untreated or the application of HA or U0126 alone. In agreement with the results in vitro, intra-articular delivery of HA + U0126 showed significant therapeutic improvement of cartilage in rat MSX OA model compared with untreated or the application of HA or U0126 alone. Our study suggests that the combination of HA and MEK-ERK inhibition has a synergistic effect on preventing cartilage degeneration.
Resumo:
Background: There is a need to better describe and understand the prevalence of breast cancer treatment-related adverse effects amenable to physical therapy and rehabilitative exercise. Prior studies have been limited to single issues and lacked long term follow-up. The Pulling Through Study provides data on prevalence of adverse effects in breast cancer survivors followed over six years. Methods: A population-based sample of Australian women (n=287) diagnosed with invasive, unilateral breast cancer was followed for a median of 6.6 years and prospectively assessed for treatment-related complications at 6, 12, 18 months, and 6 years post-diagnosis. Assessments included post-surgical complications, skin or tissue reaction to radiation therapy, upper-body symptoms, lymphedema, 10% weight gain, fatigue, and upper-quadrant function. The proportion of women with positive indication for each complication and one or more complication was estimated using all available data at each time point. Women were only considered to have a specific complication if they reported the highest two levels of the Likert scale for self-reported issues. Results: At six years post-diagnosis over 60% of women experienced one or more side effects amenable to rehabilitative intervention. The proportion of women experiencing 3 or more side effects decreased throughout follow-up, while the proportion experiencing no side effects remained stable around 40% from 12 months to six years. Weight gain was the only complication to increase in prevalence over time. Conclusion: These data support the development of a multi-disciplinary prospective surveillance approach for the purposes of managing and treating adverse effects in breast cancer survivors.
Resumo:
Nicotine addiction remains the leading cause of death and disease in developed and developing nations and a major cause of mortality around the world. Currently, nicotine replacement therapies (NRTs), bupropion, and varenicline are approved by the regulatory agencies as first-line treatments for nicotine addiction. Emerging evidence indicates that varenicline and bupropion have some therapeutic limitations for treating nicotine addiction with oral route of administration. Thus, continued investigation of innovative drug delivery for nicotine addiction remains a critical priority. This review will discuss some novel strategies and future directions for pulmonary drug delivery, an emerging route of administration for smoking cessation. It is anticipated that the advancement of knowledge on pulmonary drug delivery will provide better management for nicotine addiction and other addictive disorders.
Resumo:
Objective To investigate the health promotion and risk reduction behaviors of younger women previously treated for cancer. Design and Sample Guided by the Precede-Proceed framework, a mixed-method descriptive investigation of the health behaviors of younger women with cancer treatment-induced menopause in one health jurisdiction in Australia was undertaken. Measures This article reports the results of the qualitative interview component of the study. Results Of the 85 women who responded to surveys that quantified their health behaviors, 22 consented to interviews that explored how and why these behaviors might occur. Conclusions Several predisposing, enabling and reinforcing factors that influenced participants will or ability to engage with health-promoting behaviors after cancer treatment were identified in the interviews. These include entrenched precancer diagnosis health behaviors, the disabilities resulting from cancer treatments, perceptions of risk, focused intervention by health professionals and the nature of participants social support. The results indicate a need for flexibility when planning public health initiatives to prepare this cohort for a healthy life after cancer, which accounts for their developmental, knowledge and posttreatment needs.
Resumo:
Hypertension is a global health issue among the adult population. Adherence to antihypertensive medications is an effective step for better control of blood pressure and preventing the risk of complications. Several factors support or hinder hypertensive patients’ adherence. Objectives: This article reviews the factors affecting adherence to antihypertensive treatments, and reflects on these factors from a Saudi Arabian perspective. Methods: Papers and studies about antihypertensive medication adherence were reviewed from different databases including MEDLINE, PubMed, ScienceDirect and Google scholar. Results: Factors affecting antihypertensive treatments adherence are classified into three domains: Patient (e.g. sociodemographic, individual knowledge and skills), Health System, and Provider related factors.
Resumo:
Objective: To estimate the prevalence of lifetime infertility in Australian women born in 1946-51 and examine their uptake of treatment. Methods: Participants in the Australian Longitudinal Study on Women's Health born in 1946-51 (n=13,715) completed up to four mailed surveys from 1996 to 2004. The odds of infertility were estimated using logistic regression with adjustment for socio-demographic and reproductive factors. Results: Among participants, 92.1% had been pregnant. For women who had been pregnant (n=12738): 56.5% had at least one birth but no pregnancy loss (miscarriage and/or termination); 39.9% experienced both birth and loss; and 3.6% had a loss only. The lifetime prevalence of infertility was 11.0%. Among women who reported infertility (n=1511), 41.7% used treatment. Women had higher odds of infertility when they had reproductive histories of losses only (OR range 9.0-43.5) or had never been pregnant (OR=15.7, 95%CI 11.8-20.8); and higher odds for treatment: losses only (OR range 2.5-9.8); or never pregnant (1.96, 1.28-3.00). Women who delayed their first birth until aged 30+ years had higher odds of treatment (OR range 3.2-4.3). Conclusions: About one in ten women experienced infertility and almost half used some form of treatment, especially those attempting pregnancy after 1980. Older first time mothers had an increased uptake of treatment as assisted reproductive technologies (ART) developed. Implications: This study provided evidence of the early uptake of treatment prior to 1979 when the national register of invasive ART was developed and later uptake prior to 1998 when data on non-invasive ART were first collected.
Resumo:
OBJECTIVE: To identify the factors associated with infertility, seeking advice and treatment with fertility hormones and/or in vitro fertilisation (IVF) among a general population of women. METHODS: Participants in the Australian Longitudinal Study on Women's Health aged 28-33 years in 2006 had completed up to four mailed surveys over 10 years (n=9,145). Parsimonious multivariate logistic regression was used to identify the socio-demographic, biological (including reproductive histories), and behavioural factors associated with infertility, advice and hormonal/IVF treatment. RESULTS: For women who had tried to conceive or had been pregnant (n=5,936), 17% reported infertility. Among women with infertility (n=1031), 72% (n=728) sought advice but only 50% (n=356) used hormonal/IVF treatment. Women had higher odds of infertility when: they had never been pregnant (OR=7.2, 95% CI 5.6-9.1) or had a history of miscarriage (OR range=1.5-4.0) than those who had given birth (and never had a miscarriage or termination). CONCLUSION: Only one-third of women with infertility used hormonal and/or IVF treatment. Women with PCOS or endometriosis were the most proactive in having sought advice and used hormonal/IVF treatment. IMPLICATIONS: Raised awareness of age-related declining fertility is important for partnered women aged approximately 30 years to encourage pregnancy during their prime reproductive years and reduce the risk of infertility.
Resumo:
Objective: To identify early users (women aged <34 years) of fertility treatment with hormones and in vitro fertilisation (IVF). Methods: A cross-sectional survey of infertile women from fertility clinics (n=59) and from the community (Australian Longitudinal Study on Women's Health participants) who had (n=121) or had not (n=110) used hormones/IVF as treatment for infertility. Associations between socio-demographic, reproductive and lifestyle factors, medical conditions and recurrent symptoms and using treatment (or not) were analysed using multivariable logistic regression. Results: Among infertile women who had used treatment (community vs clinic), women from clinics had lower odds of living outside major cities, using hormones only, i.e., not IVF, or recurrent headaches/migraines, severe tiredness, or stiff/painful joints; and higher odds of recent diagnoses of urinary tract infection or anxiety disorder. Compared to infertile women who had not used treatment, women from clinics had lower odds of living outside major cities, recurrent allergies or severe tiredness; and higher odds of having private health insurance for hospital or ancillary services, recent diagnosis of polycystic ovary syndrome or recurrent constipation. Conclusions: Compared to infertile women in the community, living in major cities and having private health insurance are associated with early use of treatment for infertility at specialist clinics by women aged <34 years. Implications: These results provided evidence of inequity of services for infertile women.
Resumo:
Birth outcomes during a three year period were compared for women with a history of infertility who did or did not use fertility treatment with hormones and/or in vitro fertilisation. Participants in the Australian Longitudinal Study on Women’s Health born in 1973-78 were randomly selected from the universal public health insurance database and completed up to five mailed surveys (1996-2009). Participants reported on their infertility and use of treatment at age 28-33 years (survey 4 (S4) in 2006) and 31-36 years (survey 5 (S5) in 2009). The odds of resolved infertility at S5 were estimated using logistic regression with adjustment for age, area of residence, private health insurance and male infertility. Among 7280 women who responded to both S4 and S5, 18.6% (n=1378) reported infertility. More than half (n=804, 56.8%) of these women did not use treatment and 43.9% (n=347) gave birth between S4 and S5. Compared to infertile women who did not use treatment, women who used treatment were more likely at S5 to have recently given birth (odds ratio (OR) = 1.59, 95% CI 1.26-2.00) or be pregnant (OR = 1.77, 1.27-2.46). Further, women who used treatment were more likely to have twins (3.37, 1.18-9.62), premature births (1.52, 0.95-2.43), or low birthweight babies (1.83, 0.70-2.53) compared to women who gave birth without using treatment. Many women aged up to 36 years with a history of infertility can conceive naturally over a three year period without the use of treatment.Women who have never had a prior birth may need to use treatment to resolve their infertility but they are at higher risk of poorer perinatal outcomes, such as premature or low birthweight babies.
Resumo:
Background On-site wastewater treatment system (OWTS) siting, design and management has traditionally been based on site specific conditions with little regard to the surrounding environment or the cumulative effect of other systems in the environment. The general approach has been to apply the same framework of standards and regulations to all sites equally, regardless of the sensitivity, or lack thereof, to the receiving environment. Consequently, this has led to the continuing poor performance and failure of on-site systems, resulting in environmental and public health consequences. As a result, there is increasing realisation that more scientifically robust evaluations in regard to site assessment and the underlying ground conditions are needed. Risk-based approaches to on-site system siting, design and management are considered the most appropriate means of improvement to the current standards and codes for on-site wastewater treatment systems. The Project Research in relation to this project was undertaken within the Gold Coast City Council region, the major focus being the semi-urban, rural residential and hinterland areas of the city that are not serviced by centralised treatment systems. The Gold Coast has over 15,000 on-site systems in use, with approximately 66% being common septic tank-subsurface dispersal systems. A recent study evaluating the performance of these systems within the Gold Coast area showed approximately 90% were not meeting the specified guidelines for effluent treatment and dispersal. The main focus of this research was to incorporate strong scientific knowledge into an integrated risk assessment process to allow suitable management practices to be set in place to mitigate the inherent risks. To achieve this, research was undertaken focusing on three main aspects involved with the performance and management of OWTS. Firstly, an investigation into the suitability of soil for providing appropriate effluent renovation was conducted. This involved detailed soil investigations, laboratory analysis and the use of multivariate statistical methods for analysing soil information. The outcomes of these investigations were developed into a framework for assessing soil suitability for effluent renovation. This formed the basis for the assessment of OWTS siting and design risks employed in the developed risk framework. Secondly, an assessment of the environmental and public health risks was performed specifically related the release of contaminants from OWTS. This involved detailed groundwater and surface water sampling and analysis to assess the current and potential risks of contamination throughout the Gold Coast region. Additionally, the assessment of public health risk incorporated the use of bacterial source tracking methods to identify the different sources of fecal contamination within monitored regions. Antibiotic resistance pattern analysis was utilised to determine the extent of human faecal contamination, with the outcomes utilised for providing a more indicative public health assessment. Finally, the outcomes of both the soil suitability assessment and ground and surface water monitoring was utilised for the development of the integrated risk framework. The research outcomes achieved through this project enabled the primary research aims and objects to be accomplished. This in turn would enable Gold Coast City Council to provide more appropriate assessment and management guidelines based on robust scientific knowledge which will ultimately ensure that the potential environmental and public health impacts resulting from on-site wastewater treatment is minimised. As part of the implementation of suitable management strategies, a critical point monitoring program (CPM) was formulated. This entailed the identification of the key critical parameters that contribute to the characterised risks at monitored locations within the study area. The CPM will allow more direct procedures to be implemented, targeting the specific hazards at sensitive areas throughout Gold Coast region.
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
Background The onsite treatment of sewage and effluent disposal within the premises is widely prevalent in rural and urban fringe areas due to the general unavailability of reticulated wastewater collection systems. Despite the seemingly low technology of the systems, failure is common and in many cases leading to adverse public health and environmental consequences. Therefore it is important that careful consideration is given to the design and location of onsite sewage treatment systems. It requires an understanding of the factors that influence treatment performance. The use of subsurface effluent absorption systems is the most common form of effluent disposal for onsite sewage treatment and particularly for septic tanks. Additionally in the case of septic tanks, a subsurface disposal system is generally an integral component of the sewage treatment process. Therefore location specific factors will play a key role in this context. The project The primary aims of the research project are: • to relate treatment performance of onsite sewage treatment systems to soil conditions at site; • to identify important areas where there is currently a lack of relevant research knowledge and is in need of further investigation. These tasks were undertaken with the objective of facilitating the development of performance based planning and management strategies for onsite sewage treatment. The primary focus of the research project has been on septic tanks. Therefore by implication the investigation has been confined to subsurface soil absorption systems. The design and treatment processes taking place within the septic tank chamber itself did not form a part of the investigation. In the evaluation to be undertaken, the treatment performance of soil absorption systems will be related to the physico-chemical characteristics of the soil. Five broad categories of soil types have been considered for this purpose. The number of systems investigated was based on the proportionate area of urban development within the Brisbane region located on each soil types. In the initial phase of the investigation, though the majority of the systems evaluated were septic tanks, a small number of aerobic wastewater treatment systems (AWTS) were also included. This was primarily to compare the effluent quality of systems employing different generic treatment processes. It is important to note that the number of different types of systems investigated was relatively small. As such this does not permit a statistical analysis to be undertaken of the results obtained. This is an important issue considering the large number of parameters that can influence treatment performance and their wide variability. The report This report is the second in a series of three reports focussing on the performance evaluation of onsite treatment of sewage. The research project was initiated at the request of the Brisbane City Council. The work undertaken included site investigation and testing of sewage effluent and soil samples taken at distances of 1 and 3 m from the effluent disposal area. The project component discussed in the current report formed the basis for the more detailed investigation undertaken subsequently. The outcomes from the initial studies have been discussed, which enabled the identification of factors to be investigated further. Primarily, this report contains the results of the field monitoring program, the initial analysis undertaken and preliminary conclusions. Field study and outcomes Initially commencing with a list of 252 locations in 17 different suburbs, a total of 22 sites in 21 different locations were monitored. These sites were selected based on predetermined criteria. To obtain house owner agreement to participate in the monitoring study was not an easy task. Six of these sites had to be abandoned subsequently due to various reasons. The remaining sites included eight septic systems with subsurface effluent disposal and treating blackwater or combined black and greywater, two sites treating greywater only and six sites with AWTS. In addition to collecting effluent and soil samples from each site, a detailed field investigation including a series of house owner interviews were also undertaken. Significant observations were made during the field investigations. In addition to site specific observations, the general observations include the following: • Most house owners are unaware of the need for regular maintenance. Sludge removal has not been undertaken in any of the septic tanks monitored. Even in the case of aerated wastewater treatment systems, the regular inspections by the supplier is confined only to the treatment system and does not include the effluent disposal system. This is not a satisfactory situation as the investigations revealed. • In the case of separate greywater systems, only one site had a suitably functioning disposal arrangement. The general practice is to employ a garden hose to siphon the greywater for use in surface irrigation of the garden. • In most sites, the soil profile showed significant lateral percolation of effluent. As such, the flow of effluent to surface water bodies is a distinct possibility. • The need to investigate the subsurface condition to a depth greater than what is required for the standard percolation test was clearly evident. On occasion, seemingly permeable soil was found to have an underlying impermeable soil layer or vice versa. The important outcomes from the testing program include the following: • Though effluent treatment is influenced by the physico-chemical characteristics of the soil, it was not possible to distinguish between the treatment performance of different soil types. This leads to the hypothesis that effluent renovation is significantly influenced by the combination of various physico-chemical parameters rather than single parameters. This would make the processes involved strongly site specific. • Generally the improvement in effluent quality appears to take place only within the initial 1 m of travel and without any appreciable improvement thereafter. This relates only to the degree of improvement obtained and does not imply that this quality is satisfactory. This calls into question the value of adopting setback distances from sensitive water bodies. • Use of AWTS for sewage treatment may provide effluent of higher quality suitable for surface disposal. However on the whole, after a 1-3 m of travel through the subsurface, it was not possible to distinguish any significant differences in quality between those originating from septic tanks and AWTS. • In comparison with effluent quality from a conventional wastewater treatment plant, most systems were found to perform satisfactorily with regards to Total Nitrogen. The success rate was much lower in the case of faecal coliforms. However it is important to note that five of the systems exhibited problems with regards to effluent disposal, resulting in surface flow. This could lead to possible contamination of surface water courses. • The ratio of TDS to EC is about 0.42 whilst the optimum recommended value for use of treated effluent for irrigation should be about 0.64. This would mean a higher salt content in the effluent than what is advisable for use in irrigation. A consequence of this would be the accumulation of salts to a concentration harmful to crops or the landscape unless adequate leaching is present. These relatively high EC values are present even in the case of AWTS where surface irrigation of effluent is being undertaken. However it is important to note that this is not an artefact of the treatment process but rather an indication of the quality of the wastewater generated in the household. This clearly indicates the need for further research to evaluate the suitability of various soil types for the surface irrigation of effluent where the TDS/EC ratio is less than 0.64. • Effluent percolating through the subsurface absorption field may travel in the form of dilute pulses. As such the effluent will move through the soil profile forming fronts of elevated parameter levels. • The downward flow of effluent and leaching of the soil profile is evident in the case of podsolic, lithosol and kransozem soils. Lateral flow of effluent is evident in the case of prairie soils. Gleyed podsolic soils indicate poor drainage and ponding of effluent. In the current phase of the research project, a number of chemical indicators such as EC, pH and chloride concentration were employed as indicators to investigate the extent of effluent flow and to understand how soil renovates effluent. The soil profile, especially texture, structure and moisture regime was examined more in an engineering sense to determine the effect of movement of water into and through the soil. However it is not only the physical characteristics, but the chemical characteristics of the soil also play a key role in the effluent renovation process. Therefore in order to understand the complex processes taking place in a subsurface effluent disposal area, it is important that the identified influential parameters are evaluated using soil chemical concepts. Consequently the primary focus of the next phase of the research project will be to identify linkages between various important parameters. The research thus envisaged will help to develop robust criteria for evaluating the performance of subsurface disposal systems.