763 resultados para Antiferromagnetic spins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the possibility of a direct second-order transition out of a collinear Neel phase to a paramagnetic spin liquid in two-dimensional quantum antiferromagnets. Contrary to conventional wisdom, we show that such second-order quantum transitions can potentially occur to certain spin liquid states popular in theories of the cuprates. We provide a theory of this transition and study its universal properties in an epsilon expansion. The existence of such a transition has a number of interesting implications for spin-liquid-based approaches to the underdoped cuprates. In particular it considerably clarifies existing ideas for incorporating antiferromagnetic long range order into such a spin-liquid-based approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brillouin scattering studies on single crystals of a charge-ordered manganite, Nd0.5Ca0.5MnO3, have been carried out for the first time. The spectra show two modes at similar to 27 GHz (B-mode) and 60 GHz (S-mode). The B-mode frequency and intensity from 300 K to 27 K, covering both the charge ordering transition at 250 K and the antiferromagnetic transition, at 170 K, exactly follow the same temperature dependence as the d.c. magnetic susceptibility. The B-mode is associated With bulk magnetic excitations and the S-mode with surface magnetic excitations of the manganite with ferromagnetic correlations. The study is strongly indicative of the presence of ferromagnetic inhomogeneities in the charge-ordered as well as antiferromagnetic phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential of Bi2CuO4 as the first oxide system to show a linear-chain magnetic behaviour is examined. Electron diffraction studies do not resolve the previously reported ambiguity regarding its space group. The magnetic susceptibility data at high temperatures are best fitted to a uniform antiferromagnetic spin-1/2 Heisenberg chain. At low temperatures, however, neither the uniform nor the alternating Heisenberg antiferromagnetic model fits the data. Magnetic susceptibility data over the entire temperature range can be fitted if one assumes dimeric units with a nearly degenerate second singlet state close to the ground state, these states being separated from an excited triplet state by an energy gap. A simple heuristic model of a dimer that gives such an energy level spectrum is examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic susceptibilities of a large number of ternary oxides of copper having structural features common to the presently identified phases of high-temperature superconductors have been studied in the temperature range 14-300 K. The systems studied are Ln2CuOP( Ln = La, Pr, Nd, etc.), Sr2CuO2CI2,B i2Cu0,, Ca2Cu03,S r2Cu03,S rCu02, MgCu203,B a2Cu3O4CI2Y, 2Cu205,Y2BaCu0,, BaCu02, Li2Cu02, etc. Cu2+ ions take different coordinations, like isolated square planar, square pyramidal or distorted-tetrahedral and octahedral, in these compounds. These compounds also exhibit different varieties of possible magnetic superexchange interactions like 180' or 90' Cu-0-Cu or Cu-0-0-Cu types as well as direct Cu-Cu interactions. Compounds in which there are extended 180' Cu-0-Cu interactions show a low, nearly temperature-independent susceptibility (100 X lod emu/mol). The estimated value of J for the Cu-0-Cu interaction is between 800 and 1500 K in these compounds. Isolated Cu2+ ions in which there are no 180' or close to 180" Cu-0-Cu interactions show Curie-Weiss susceptibility behavior. Compounds with only Cu-0-0-Cu interaction show evidence for the onset of antiferromagnetic coupling between 30 and 50 K. The superexchange rules are useful for explaining the qualitative features of the results. The possibility of disproportionation of Cu2+ ion when there are short Cu-Cu distances as in Bi2Cu04 is discussed. The extended geometry of the copper-oxygen framework seems to be more important than the local geometry around the Cu2+ ion in determining the magnetic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present first-principles density-functional-theory-based calculations to determine the effects of the strength of on-site electron correlation, magnetic ordering, pressure and Se vacancies on phonon frequencies and electronic structure of FeSe1-x. The theoretical equilibrium structure (lattice parameters) of FeSe depends sensitively on the value of the Hubbard parameter U of on-site correlation and magnetic ordering. Our results suggest that there is a competition between different antiferromagnetic states due to comparable magnetic exchange couplings between first- and second-neighbor Fe sites. As a result, a short range order of stripe antiferromagnetic type is shown to be relevant to the normal state of FeSe at low temperature. We show that there is a strong spin-phonon coupling in FeSe (comparable to its superconducting transition temperature) as reflected in large changes in the frequencies of certain phonons with different magnetic ordering, which is used to explain the observed hardening of a Raman-active phonon at temperatures (similar to 100 K) where magnetic ordering sets in. The symmetry of the stripe antiferromagnetic phase permits an induced stress with orthorhombic symmetry, leading to orthorhombic strain as a secondary order parameter at the temperature of magnetic ordering. The presence of Se vacancies in FeSe gives rise to a large peak in the density of states near the Fermi energy, which could enhance the superconducting transition temperature within the BCS-like picture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of pyrimidine-2-carbonitrile, NaN3 in the presence of Co(NO3)(2)center dot 6H(2)O or MnCl2 center dot 4H(2)O leads to the formation of complexes Co(pmtz)(mu(1,3)-N-3)(H2O)](n) (1) and Mn(pmtz)(mu(1,3)-N-3)(H2O)](n) (2) respectively, under hydrothermal condition pmtz =5-(pyrimidyl)tetrazolate]. These two complexes have been fully characterized by single crystal X-ray diffraction. Complex 1 crystallizes in a non-centrosymmetric space group Aba2 in the orthorhombic system and is found to exhibit ferroelectric behavior, whereas complex 2 crystallizes in the P2(1)/c space group in the monoclinic system. Variable temperature magnetic characterizations in the temperature range of 2-300 K indicate that complex 1 is a canted antiferromagnet (weak ferromagnet) with T-c = 15.9 K. Complex 1 represents a unique example of a multiferroic coordination polymer containing tetrazole as a co-ligand. Complex 2 is a one-dimensional chain of Mn(II) bridged by a well-known antiferromagnetic coupler end-to-end azido ligand. In contrast to the role played by the end-to-end azido pathway in most of the transition metal complexes, complex 2 showed unusual ferromagnetic behavior below 40 K because of spin canting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La2CoO4+? (? reverse similar, equals 0.1) possessing the K2NiF4 structure has been prepared by skull melting as well as the ceramic method. Evidence for antiferromagnetic ordering has been found in these samples. Stoichiometric La2CoO4 prepared by the reduction of the oxygen excess samples was partially characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hydrothermal reaction of a mixture of ZnCl2, V2O5, ethylenediamine and water gave rise to a layered poly oxovanadate material. clusters. These clusters, with all the vanadium ions in the +4 state, are connected together through Zn(NH2(CH2)(2)NH2)(2) linkers forming a two-dimensional structure. The layers are also separated by distorted trigonal bipyramidal [Zn-2(NH2(CH2)(2)NH2)(5)] complexes. The Structure, thus, presents a dual role for the Zn-ethylenediamine complex. The magnetic susceptibility studies indicate that the interactions between the V centres in I are predominantly antiferromagnetic in nature and the compound shows highly frustrated behaviour. The magnetic properties are compared to the theoretical calculations based oil the Heisenberg model, in addition to correlating to the structure. Crystal data for the complexes are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments. (C) 2010 American Institute of Physics. doi: 10.1063/1.3474948]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground-state properties of the spin-(1/2 Heisenberg antiferromagnet on a square lattice are studied by using a simple variational wave function that interpolates continuously between the Néel state and short-range resonating-valence-bond states. Exact calculations of the variational energy for small systems show that the state with the lowest energy has long-range antiferromagnetic order. The staggered magnetization in this state is approximately 70% of its maximum possible value. The variational estimate of the ground-state energy is substantially lower than the value obtained for the nearest-neighbor resonating-valence-bond wave function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use C-13 nuclear spins as qubits and an environment of H-1 nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 mu s. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new transition metal complexes using 2-pyrimidineamidoxime (pmadH(2)) as multidentate chelating and/or bridging ligand have been synthesized and characterized. The ligand pmadH(2) has two potential bridging functional groups mu-O and mu-(N-O)] and consequently shows several coordination modes. While a polymeric 1D Cu-II complex Cu(pmadH(2))(2)(NO3)](NO3) (1) was obtained upon treatment of Cu(NO3)(2)center dot 3H(2)O with pmadH(2) at room temperature in the absence of base, a high temperature reaction in the presence of base yielded a tetranuclear Cu-II-complex Cu-4(pmad)(2)(pmadH)(2)(NO3)](NO3)(H2O) (2). One of the Cu-II centers is in a square pyramidal environment while the other three are in a square planar geometry. Reaction of the same ligand with an equimolar mixture of both Cu(NO3)(2)center dot 3H(2)O and NiCl2 center dot 6H(2)O yielded a tetranuclear heterometallic (Cu2Ni2II)-Ni-II complex Cu2Ni2(pmad)(2)(pmadH)(2)Cl-2]center dot H2O (3) containing both square planar (Ni-II) and square pyramidal (Cu-II) metal centers. Complexes 1-3 represent the first examples of polynuclear metal complexes of 2-pyrimidineamidoxime. The analysis of variable temperature magnetic susceptibility data of 2 reveals that both ferromagnetic and antiferromagnetic interactions exist in this complex (J(1) = +10.7 cm(-1) and J(2) = -2.7 cm(-1) with g = 2.1) leading to a resultant ferromagnetic behavior. Complex 3 shows expected antiferromagnetic interaction between two Cu-II centers through -N-O- bridging pathway with J(1) = -3.4 cm(-1) and g = 2.08. DFT calculations have been used to corroborate the magnetic results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the rare-earth transition-metal oxide series, Ln(2)CuTiO(6) (Ln = Y, Dy, Ho, Er, and Yb), crystallizing in the hexagonal structure with noncentrosymmetric P6(3)cm space group for possible occurrences of multiferroic properties. Our results show that while these compounds, except Ln = Y, exhibit a low-temperature antiferromagnetic transition due to the ordering of the rare-earth moments, the expected ferroelectric transition is frustrated by the large size difference between Cu and Ti at the B site. Interestingly, this leads these compounds to attain a rare and unique combination of desirable paraelectric properties with high dielectric constants, low losses, and weak temperature and frequency dependencies. First-principles calculations establish these exceptional properties result from a combination of two effects. A significant difference in the MO5 polyhedral sizes for M = Cu and M = Ti suppress the expected cooperative tilt pattern of these polyhedra, required for the ferroelectric transition, leading to relatively large values of the dielectric constant for every compound investigated in this series. Additionally, it is shown that the majority contribution to the dielectric constant arises from intermediate-frequency polar vibrational modes, making it relatively stable against any temperature variation. Changes in the temperature stability of the dielectric constant among different members of this series are shown to arise from changes in relative contributions from soft polar modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.