940 resultados para Antibody secreting cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects.
Experimental Design: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies.
Results: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S–mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors.
Conclusions: These results show that blocking the invasive and proangiogenic effects of cathepsin S with antibody inhibitors may have therapeutic utility upon further preclinical and clinical evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have challenged the view that Langerhans cells (LCs) constitute the exclusive antigen-presenting cells of the skin and suggest that the dermal dendritic cell (DDC) network is exceedingly complex. Using knockin mice to track and ablate DCs expressing langerin (CD207), we discovered that the dermis contains five distinct DC subsets and identified their migratory counterparts in draining lymph nodes. Based on this refined classification, we demonstrated that the quantitatively minor CD207+ CD103+ DDC subset is endowed with the unique capability of cross-presenting antigens expressed by keratinocytes irrespective of the presence of LCs. We further showed that Y-Ae, an antibody that is widely used to monitor the formation of complexes involving I-Ab molecules and a peptide derived from the I-E alpha chain, recognizes mature skin DCs that express I-Ab molecules in the absence of I-E alpha. Knowledge of this extra reactivity is important because it could be, and already has been, mistakenly interpreted to support the view that antigen transfer can occur between LCs and DDCs. Collectively, these data revisit the transfer of antigen that occurs between keratinocytes and the five distinguishable skin DC subsets and stress the high degree of functional specialization that exists among them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development.

METHODOLOGY/PRINCIPAL FINDINGS: Cathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.

CONCLUSIONS/SIGNIFICANCE: Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of polyunsaturated n-6 linoleic acid on monocyte-endothelial interactions were investigated with particular emphasis on the expression of platelet/endothelial cell adhesion molecule (PECAM)-1 and the role of protein kinase C (PKC) and cyclooxygenase-2 (COX-2). As a diet rich in polyunsaturated fatty acids may favour atherosclerosis in hyperglycaemia, this study was performed in both normal and high-glucose media using human aortic endothelial cells (HAEC). The HAEC were preincubated with normal (5 mM) or high (25 mM) d-glucose for 3 days before addition of fatty acids (0.2 mM) for 3 days. Linoleic acid enhanced PECAM-1 expression independently of tumor necrosis factor (TNF)-a and significantly increased TNF-a-induced monocyte adhesion to HAEC in comparison to the monounsaturated n-9 oleic acid. Chronic glucose treatment (25 mM, 6 days) did not modify the TNF-a-induced or fatty acid-induced changes in monocyte binding. The increase in monocyte binding was accompanied by a significant increase in E-selectin and vascular cell adhesion molecule (VCAM)-1 expression and could be abrogated by an interleukin (IL)-8 neutralising antibody and by the PKC and COX inhibitors. Inhibition of PKC-d reduced VCAM-1 expression regardless of experimental condition and was accompanied by a significant decrease in monocyte binding. Conditioned medium from linoleic acid-treated HAEC grown in normal glucose conditions significantly increased THP-1 chemotaxis. These results suggest that linoleic acid-induced changes in monocyte chemotaxis and subsequent binding are not solely mediated by changes in adhesion molecule expression but may be due to secreted factors such as IL-8, monocyte chemoattractant protein-1 or prostaglandins (PGs) such as PGE2, as IL-8 neutralisation and COX-2 inhibition reduced monocyte binding without changes in adhesion molecule expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, nanoparticulate-mediated drug delivery research has examined a full spectrum of nanoparticles that can be used in diagnostic and therapeutic cancer applications. A key aspect of this technology is in the potential to specifically target the nanoparticles to diseased cells using a range of molecules, in particular antibodies. Antibody-nanoparticle conjugates have the potential to elicit effective targeting and release of therapeutic targets at the disease site, while minimizing off-target side effects caused by dosing of normal tissues. This article provides an overview of various antibody-conjugated nanoparticle strategies, focusing on the rationale of cell-surface receptors targeted and their potential clinical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The guanine nucleotide exchange factor C3G, along with the CrkII adaptor protein, mediates GTP activation of the small GTPase proteins Rap1 and R-Ras, facilitating their activation of downstream signaling pathways, which had been found to be important in the pathogenesis of glomerulonephritis. We found that expression of C3G protein was upregulated in glomerular epithelial cells in an experimental model of accelerated anti-GBM antibody-induced glomerulonephritis expression. To determine the consequence of its increased expression, we transfected C3G (using adenoviral constructs) into cultured glomerular epithelial cells and measured the activated forms (i.e., GTP-bound) forms of Rap1 and R-Ras. Activation of Rap1 was not affected by C3G; however, the basal level of GTP-bound R-Ras was decreased. Further, C3G over-expression enhanced the activation of R-Ras in response to endothelin. Overexpression of C3G also led to a significant reduction in glomerular epithelial cell spreading and decreased the cells' E-cadherin expression and augmented their migration. We found that C3G was overexpressed in accelerated anti-GBM antibody-induced glomerulonephritis and suggest that this modulates glomerular epithelial cell morphology and behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an urgent global need for preventative strategies against HIV-1 infections. Llama heavy-chain antibody fragments (VHH) are a class of molecules recently described as potent cross-clade HIV-1 entry inhibitors. We studied the potential of a VHH-based microbicide in an application-oriented fashion. We show that VHH can be inexpensively produced in high amounts in the GRAS organism S. cerevisiae, resulting in very pure, and endotoxin free product. VHH are very stable under conditions they might encounter during transport, storage or use by women. We developed active formulations of VHH in aqueous gel and compressed and lyophilized tablets for controlled release from an intra vaginal device. The release profile of the VHH from e.g. a vaginal ring suggests sufficient bioavailability and protective concentration of the molecule at the mucosal site at the moment of the infection. The ex vivo penetration kinetics through human tissues show that the VHH diffuse into the mucosal layer and open the possibility to create a second defense layer either by blocking the HIV receptor binding sites or by blocking the receptors of immune cells in the mucosa. In conclusion, our data show that VHH have

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to ionizing radiation can increase the risk of cancer, which is often characterized by genomic instability. In environmental exposures to high-LET radiation (e.g. Ra-222), it is unlikely that many cells will be traversed or that any cell will be traversed by more than one alpha particle, resulting in an in vivo bystander situation, potentially involving inflammation. Here primary human lymphocytes were irradiated with precise numbers of He-3(2+) ions delivered to defined cell population fractions, to as low as a single cell being traversed, resembling in vivo conditions. Also, we assessed the contribution to genomic instability of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFA). Genomic instability was significantly elevated in irradiated groups ( greater than or equal totwofold over controls) and was comparable whether cells were traversed by one or two He-3(2+) ions. Interestingly, substantial heterogeneity in genomic instability between experiments was observed when only one cell was traversed. Genomic instability was significantly reduced (60%) in cultures in which all cells were irradiated in the presence of TNFA antibody, but not when fractions were irradiated under the same conditions, suggesting that TNFA may have a role in the initiation of genomic instability in irradiated cells but not bystander cells. These results have implications for low-dose exposure risks and cancer. (C) 2005 by Radiation Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coeliac disease is an enteropathy associated with dietary gluten which occurs in individuals with a genetic predisposition. The pathogenesis remains obscure although it is clear that only certain parts of the gliadin molecule are toxic and there is considerable evidence of immunological activity, including antibody production. In this issue of European Journal of Gastroenterology and Hepatology Carton et al. present evidence in favour of an inherent depletion of CD4CD8 T cells, which could result in a loss of oral tolerance to ingested gliadin. Using flow cytometry they also demonstrated that the classic T-cell infiltration of coeliac disease is not due to an increase in T cells but is an apparent increase associated with a relative decrease in enterocytes as a result of the change in architecture of the mucosa. These could be important fundamental observations in helping to unravel the pathogenesis of coeliac disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few patients with Behçet's syndrome have gastrointestinal ulceration. Such patients are difficult to treat and have a higher mortality. Faced with refractory symptoms in two patients with intestinal Behçet's, we used the tumour necrosis factor alpha (TNF-alpha) monoclonal antibody infliximab to induce remission. Both women (one aged 27 years, the other 30 years) presented with orogenital ulceration, pustular rash, abdominal pain, bloody diarrhoea due to colonic ulceration, weight loss, and synovitis. One had thrombophlebitis, digital vasculitis, perianal fistula, and paracolic abscess; the other had conjunctivitis and an ulcer in the natal cleft. Treatment with prednisolone, methyl prednisolone, and thalidomide in one and prednisolone, colchicine, and cyclosporin in the other was ineffective. After full discussion, infliximab (3 mg/kg, dose reduced because of recent sepsis in one, and 5 mg/kg in the other) was administered. Within 10 days the ulcers healed, with resolution of bloody diarrhoea and all extraintestinal manifestations. A second infusion of infliximab was necessary eight weeks later in one case, followed by sustained (>15 months) remission on low dose thalidomide. Remission was initially sustained for 12 months in the other but thalidomide had to be stopped due to intolerance, and a good response to retreatment lasted only 12 weeks without immunosuppression, before a third infusion. The cause of Behçet's syndrome is unknown but peripheral blood CD45 gammadelta T cells in Behçet's produce >50-fold more TNF-alpha than controls when stimulated with phorbol myristate acetate and anti-CD3. Infliximab could have a role for inducing remission in Behçet's syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An IgM mouse monoclonal antibody (McAb) Bf4 was produced to a surface polysaccharide of Bacteroides fragilis NCTC 9343. Immunoblotting showed that McAb Bf4 reacted strongly with a high molecular mass structure which was sensitive to oxidation with periodate but resisted protease treatment. An inhibition enzyme-linked immunosorbent assay (ELISA) indicated that McAb Bf4 did not cross react with the sixteen Bacteroides species and strains tested. Cells of B. fragilis NCTC 9343 recovered from the various interfaces of a Percoll discontinuous density gradient were tested in the inhibition ELISA. Bacteria from the 0-20%, 20-40% and 40-60% interfaces inhibited the ELISA; however, cells from the 60-80% interface did not. Electron microscopy with immunogold labelling showed that McAb Bf4 did not react with the extracellular fibrous network on bacteria recovered from the 0-20% interface, or the extracellular electron dense layer on cells from the 60-80% interface; however, it was associated with a surface structure on cells from the 20-40% interface. Growth in vivo did not enrich for bacteria with this structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate (TMP) is a photosensitizer that can be used in photodynamic therapy (PDT) to induce cell death through generation of reactive oxygen species in targeted tumor cells. However, TMP is highly hydrophilic, and therefore, its ability to accumulate intracellularly is limited. In this study, a strategy to improve TMP uptake into cells has been investigated by encapsulating the compound in a hydrogel-based chitosan/alginate nanoparticle formulation. Nanoparticles of 560 nm in diameter entrapping 9.1 µg of TMP per mg of formulation were produced and examined in cell-based assays. These particles were endocytosed into human colorectal carcinoma HCT116 cells and elicited a more potent photocytotoxic effect than free drug. Antibodies targeting death receptor 5 (DR5), a cell surface apoptosis-inducing receptor up-regulated in various types of cancer and found on HCT116 cells, were then conjugated onto the particles. The conjugated antibodies further enhanced uptake and cytotoxic potency of the nanoparticle. Taken together, these results show that antibody-conjugated chitosan/alginate nanoparticles significantly enhanced the therapeutic effectiveness of entrapped TMP. This novel approach provides a strategy for providing targeted site-specific delivery of TMP and other photosensitizer drugs to treat colorectal tumors using PDT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale: Mesenchymal stem cells secrete paracrine factors that can regulate lung permeability and decrease inflammation, making it a potentially attractive therapy for acute lung injury. However, concerns exist whether mesenchymal stem cells' immunomodulatory properties may have detrimental effects if targeted toward infectious causes of lung injury. Objectives: Therefore, we tested the effect of mesenchymal stem cells on lung fluid balance, acute inflammation, and bacterial clearance. Methods: We developed an Escherichia coli pneumonia model in our ex vivo perfused human lung to test the therapeutic effects of mesenchymal stem cells on bacterial-induced acute lung injury. Measurements and Main Results: Clinical-grade human mesenchymal stem cells restored alveolar fluid clearance to a normal level, decreased inflammation, and were associated with increased bacterial killing and reduced bacteremia, in part through increased alveolar macrophage phagocytosis and secretion of antimicrobial factors. Keratinocyte growth factor, a soluble factor secreted by mesenchymal stem cells, duplicated most of the antimicrobial effects. In subsequent in vitro studies, we discovered that human monocytes expressed the keratinocyte growth factor receptor, and that keratinocyte growth factor decreased apoptosis of human monocytes through AKT phosphorylation, an effect that increased bacterial clearance. Inhibition of keratinocyte growth factor by a neutralizing antibody reduced the antimicrobial effects of mesenchymal stem cells in the ex vivo perfused human lung and monocytes grown in vitro injured with E. coli bacteria. Conclusions: In E. coli-injured human lungs, mesenchymal stem cells restored alveolar fluid clearance, reduced inflammation, and exerted antimicrobial activity, in part through keratinocyte growth factor secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/ LL-37.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.