814 resultados para Anionic polyelectrolytes
Resumo:
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01 × 10− 7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.
Resumo:
JORNADAS DE ELECTROQUÍMICA E INOVAÇÃO 2013
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioengenharia (MIT)
Resumo:
O trabalho consistiu no desenvolvimento e caracterização de sensores potenciométricos com base em polímeros de impressão molecular para a determinação de um antibiótico, a norfloxacina, em aquacultura. A simplicidade, o baixo custo e a interação rápida e reversível dos sensores potenciométricos com os analitos fizeram com que este fosse o tipo de sensor escolhido. O material sensor foi obtido por tecnologia de impressão molecular, baseada em polimerização em bulk, em que a NOR foi a molécula molde e foram utilizados como monómeros para autoconstrução dos sensores o pirrol, isoladamente, ou em conjunto com partículas de sílica gel funcionalizadas com 3-aminopropil. Também foi obtido material sensor, para controlo, em que a molécula molde NOR não estava presente (NIP). As características dos materiais sensores foram sujeitas a análise de microscopia eletrónica SEM e análise por espectrómetro de infravermelhos com transformada de Fourier. Os materiais sensores foram incluídos em membranas poliméricas, que seriam incorporadas em elétrodos. A avaliação do desempenho dos elétrodos foi feita através de curvas de calibração em diferentes meios (PBS, MES e HEPES). Também foi efetuada com sucesso a análise da sensibilidade dos elétrodos em água dopada. As diversas avaliações e análises efetuadas levaram a concluir que o MIP de pirrol com aditivo aniónico, foi o material sensor testado que permitiu obter melhores propriedades de resposta.
Resumo:
Dissertação para obtenção do Grau de Mestre em Arte e Ciência do Vidro
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Física
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centres and universities
Resumo:
The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.
Resumo:
The interaction of ionising radiation with living tissues may direct or indirectly generate several secondary species with relevant genotoxic potential. Due to recent findings that electrons with energies below the ionisation threshold can effectively damage DNA, radiation-induced damage to biological systems has increasingly come under scrutiny. The exact physico-chemical processes that occur in the first stages of electron induced damage remain to be explained. However, it is also known that free electrons have a short lifetime in the physiological medium. Hence, electron transfer processes studies represent an alternative approach through which the role of "bound" electrons as a source of damage to biological tissues can be further explored. The thesis work consists of studying dissociative electron attachment (DEA) and electron transfer to taurine and thiaproline. DEA measurements were executed in Siedlce University with Prof. Janina Kopyra under COST action MP1002 (Nanoscale insights in ion beam cancer therapy). The electron transfer experiments were conducted in a crossed atom(potassium)-molecule beam arrangement. In these studies the anionic fragmentation patterns were obtained. The results of both mechanisms are shown to be significantly different, unveiling that the damaging potential of secondary electrons can be underestimated. In addition, sulphur atoms appear to strongly influence the dissociation process, demonstrating that certain reactions can be controlled by substitution of sulphur at specific molecular sites.
Resumo:
Calcium carbonate biomineralization is a self-assembly process that has been studied to be applied in the biomedical field to encapsulate biomolecules. Advantages of engineering mineral capsules include improved drug loading efficiencies and protection against external environment. However, common production methods result in heterogeneous capsules and subject biomolecules to heat and vibration which cause irreversible damage. To overcome these issues, a microfluidic device was designed, manufactured and tested in terms of selectivity for water and oil to produce a W/O/W emulsion. During the development of this work there was one critical challenge: the selective functionalization in closed microfluidic channels. Wet chemical oxidation of PDMS with 1M NaOH, confirmed by FTIR, followed by adsorption of polyelectrolytes - PDADMAC/PSS - confirmed by UV-Vis and AFM results, render the surface of PDMS hydrophilic. UV-Vis spectroscopy also confirmed that this modification did not affect PDMS optical properties, making possible to monitor fluids and droplets. More important, with this approach PDMS remains hydrophilic over time. However, due to equipment constrains selectivity in microchannels was not achieved. Therefore, emulsion studies took place with conventional methods. Several systems were tried, with promising results achieved with CaCO3 in-situ precipitation, without the use of polymers or magnesium. This mineral stabilizes oil droplets in water, but not in air due to incomplete capsule formation.
Resumo:
Musculoskeletal diseases are one of the leading causes of disability worldwide. Tendon injuries are responsible for substantial morbidity, pain and disability. Tissue engineering strategies aim at translating tendon structure into biomimetic materials. The main goal of the present study is to develop microengineered hydrogel fibers through the combination of microfabrication and chemical interactions between oppositely charged polyelectrolytes. For this, methacrylated hyaluronic acid (MeHA) and chondroitin sulfate (MeCS) were combined with chitosan (CHT). Hydrogel fibers were obtained by injecting polymer solutions (either MeHA or MeHA/MeCS and CHT) in separate microchannels that join at a y-junction, with the materials interacting upon contact at the interface. To evaluate cell behavior, human tendon derived cells (hTDCs) were isolated from tendon surplus samples during orthopedic surgeries and seeded on top of the fibers. hTDCs adhered to the surface of the fibers, remaining viable, and were found to be expressing CD44, the receptor for hyaluronic acid. The synthesis of hydrogel fibers crosslinkable through both physical and chemical mechanisms combined with microfabrication technology allows the development of biomimetic structures with parallel fibers being formed towards the replication of tendon tissue architecture.
Resumo:
Implantable devices must exhibit mechanical properties similar to native tissues to promote appropriate cellular behavior and regeneration. Herein, we report a new membrane manufacture method based on the synthesis of polyelectrolyte complexes (PECs) that exhibit saloplasticity, i.e. variable physical-chemistry using salt as a plasticizer. This is a Green Chemistry approach, as PECs generate structures that are stabilized solely by reversible electrostatic interactions, avoiding the use of harmful crosslinkers completely. Furthermore, natural polyelectrolytes - chitosan and alginate - were used. Upon mixing them, membranes were obtained by drying the PECs at 37ºC, yielding compact PECs without resorting to organicsolvents. The plasticizing effect of salt after synthesis was shown by measuring tensile mechanical properties, which were lower when samples were immersed in high ionic strength solutions.Salt was also used during membrane synthesis in different quan- tities (0 M, 0.15 M and 0.5 M in NaCl) yielding structures with no significant differences in morphology and degradation (around 15% after 3 months in lysozyme). However, swelling was higher (about 10x) when synthesized in the presence of salt. In vitro cell studies using L929 fibroblasts showed that cells adhered and proliferated preferentially in membranes fabricated in the presence of salt (i.e. the membranes with lower tensile strength). Structures with physical-chemical properties controlled with precision open a path to tissue engineering strategies depending on fine tuning mechanical properties and cellular adhesion simply by changing ionic strength during membrane manufacture
Resumo:
Bioactive glasses, especially silica-based materials, are reported to pres- ent osteoconductive and osteoinductive properties, fundamental char- acteristics in bone regeneration [1,2]. Additionally, dexamethasone (Dex) is one of the bioactive agents able to induce the osteogenic differ- entiation of mesenchymal stem cells by increasing the alkaline phos- phatase activity, and the expression levels of Osteocalcin and Bone Sialoprotein [3]. Herein, we synthesised silica (SiO2) nanoparticles (that present inherent bioactivity and ability to act as a sustained drug delivery system), and coated their surface using poly-L-lysine (PLL) and hyaluronic acid (HA) using the layer-by-layer processing technique. Further on, we studied the influence of these new SiO2-polyelectrolyte coated nanoparticles as Dex sustained delivery systems. The SiO2 nanoparticles were loaded with Dex (SiO2-Dex) and coated with PLL and HA (SiO2-Dex-PLL-HA). Their Dex release profile was evaluated and a more sustained release was obtained with the SiO2-Dex-PLL-HA. All the particles were cultured with human bone marrow-derived mes- enchymal stem cells (hBMSCs) under osteogenic differentiation culture conditions. hBMSCs adhered, proliferated and differentiated towards the osteogenic lineage in the presence of SiO2 (DLS 174nm), SiO2-Dex (DLS 175nm) and SiO2-Dex-PLL-HA (DLS 679nm). The presence of these materials induced the overexpression of osteogenic transcripts, namely of Osteocalcin, Bone Sialoprotein and Runx2. Scanning Elec- tron Microscopy/Electron Dispersive Spectroscopy analysis demon- strated that hBMSCs synthesised calcium phosphates when cultured with SiO2-Dex and SiO2-Dex-PLL-HA nanoparticles. These results indi- cate the potential use of these SiO2-polyelectrolytes coated nanoparti- cles as dexamethasone delivery systems capable of promoting osteogenic differentiation of hBMSCs.