981 resultados para Andersen, H. C. (Hans Christian), 1805-1875


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decreases in seawater pH and carbonate saturation state (Omega) following the continuous increase in atmospheric CO2 represent a process termed ocean acidification, which is predicted to become a main threat to marine calcifiers in the near future. Segmented, tropical, marine green macro-algae of the genus Halimeda form a calcareous skeleton that involves biotically initiated and induced calcification processes influenced by cell physiology. As Halimeda is an important habitat provider and major carbonate sediment producer in tropical shallow areas, alterations of these processes due to ocean acidification may cause changes in the skeletal microstructure that have major consequences for the alga and its environment, but related knowledge is scarce. This study used scanning electron microscopy to examine changes of the CaCO3 segment microstructure of Halimedaopuntia specimens that had been exposed to artificially elevated seawater pCO2 of 650 µatm for 45 d. In spite of elevated seawater pCO2, the calcification of needles, located at the former utricle walls, was not reduced as frequent initiation of new needle-shaped crystals was observed. Abundance of the needles was 22 %/µm**2 higher and needle crystal dimensions 14 % longer. However, those needles were 42 % thinner compared with the control treatment. Moreover, lifetime cementation of the segments decreased under elevated seawater pCO2 due to a loss in micro-anhedral carbonate as indicated by significantly thinner calcified rims of central utricles (35-173 % compared with the control treatment). Decreased micro-anhedral carbonate suggests that seawater within the inter-utricular space becomes CaCO3 undersaturated (Omega < 1) during nighttime under conditions of elevated seawater pCO2, thereby favoring CaCO3 dissolution over micro-anhedral carbonate accretion. Less-cemented segments of H. opuntia may impair the environmental success of the alga, its carbonate sediment contribution, and the temporal storage of atmospheric CO2 within Halimeda-derived sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularide A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing besides higher production levels faster growth and differences in pellet formation. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of this fungus and its mutant. For this purpose, an optimised protein extraction protocol was established. Here, we show the first proteome study of a marine fungus. In total, 4759 proteins were identified. The central metabolic pathway of LF580 could be mapped by using KEGG pathway analysis and GO annotation. Using iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to a limited nutrient availability in wild type strain due to a strong pellet formation. This information can be applied to optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were made of the glacial geology and provenance of erratic in the Shackleton Range during the German geological expedition GEISHA in 1987/88, especially in the southern and northwestern parts of the range. Evidence that the entire Shackleton Range was once overrun by ice from a southerly to southeasterly direction was provided by subglacial erosional forms (e.g. striations, crescentic gouges, roches moutonnées) and erratics which probably orriginated in the region of the Whichaway Nunataks and the Pensacola Mountains in the southern part of the range. This probably happened during the last major expansion of the Anarctic polar ice sheet, which, on the basis of evidence from other parts of the continent, occurred towards the end of the Miocene. Till and an area of scattered erratics were mapped in the northwestern part of the range. These were deposited during a period of expansion of the Slessor Glacier in the Weichselian (Wisconsian) glacial stage earlier. This expansion was caused by blockage of the glacier by an expanded Filchner ice shelf which resulted from the sinking of the sea level during the Pleistocene, as demonstrated by geological studies in the Weddell Sea and along the coast of the Ross Sea. Studies of the erratics at the edges of glaciers provided information about rock concealed by the glacier.