997 resultados para Andaman Sea


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraseasonal variations (ISV) of sea surface temperature (SST) in the Bay of Bengal (BoB) is highest in its northwestern part. An Indian Ocean model forced by QuikSCAT winds and climatological river discharge (QR run) reproduces ISV of SST, albeit with weaker magnitude. Air-sea fluxes, in the presence of a shallow mixed layer, efficiently effect intraseasonal SST fluctuations. Warming during intraseasonal events is smaller (<1°C) for June - July period and larger (1.5° to 2°C) during September, the latter due to a thinner mixed layer. To examine the effect of salinity on ISV, the model was run by artificially increasing the salinity (NORR run) and by decreasing it (MAHA10 run). In NORR, both rainfall and river discharge were switched off and in MAHA10 the discharge by river Mahanadi was increased tenfold. The spatial pattern of ISV as well as its periodicity was similar in QR, NORR and MAHA10. The ISV was stronger in NORR and weaker in MAHA10, compared to QR. In NORR, both intraseasonal warming and cooling were higher than in QR, the former due to reduced air-sea heat loss as the mean SST was lower, and the latter due to enhanced subsurface processes resulting from weaker stratification. In MAHA10, both warming and cooling were lower than in QR, the former due to higher air-sea heat loss owing to higher mean SST, and the latter due to weak subsurface processes resulting from stronger stratification. These model experiments suggest that salinity effects are crucial in determining amplitudes of intraseasonal SST variations in the BoB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than six years after the great (M-w 9.2) Sumatra-Andaman earthquake, postevent processes responsible for relaxation of the coseismic stress change remain controversial. Modeling of Andaman Islands Global Positioning System (GPS) displacements indicated early near-field motions were dominated by slip down-dip of the rupture, but various researchers ascribe elements of relaxation to dominantly poroelastic, dominantly viscoelastic, and dominantly fault slip processes, depending primarily on their measurement sampling and modeling tools used. After subtracting a pre-2004 interseismic velocity, significant transient motion during the 2008.5-2010.5 epoch confirms that postseismic relaxation processes continue in Andaman. Modeling three-component velocities as viscoelastic flow yields a weighted root-mean-square (wrms) misfit that always exceeds the wrms of the measured signal (26.3 mm/yr). The best-fitting models are those that yield negligible deformation, indicating the model parameters have no real physical meaning. GPS velocities are well fit (wrms 4.0 mm/yr) by combining a viscoelastic flow model that best fits the horizontal velocities with similar to 50 cm/yr thrust slip down-dip of the coseismic rupture. Both deep slip and flow respond to stress changes, and each can significantly change stress in the realm of the other; it therefore is reasonable to expect that both transient deep slip and viscoelastic flow will influence surface deformation long after a great earthquake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabian Sea Mini Warm Pool (ASMWP) is a part of the Indian Ocean Warm Pool and formed in the eastern Arabian Sea prior to the onset of the summer monsoon season. This warm pool attained its maximum intensity during the pre-monsoon season and dissipated with the commencement of summer monsoon. The main focus of the present work was on the triggering of the dissipation of this warm pool and its relation to the onset of summer monsoon over Kerala. This phenomenon was studied utilizing NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric and Research) re-analysis data, TRMM Micro wave Imager (TMI) and observational data. To define the ASMWP, sea surface temperature exceeding 30.25A degrees C was taken as the criteria. The warm pool attained its maximum dimension and intensity nearly 2 weeks prior to the onset of summer monsoon over Kerala. Interestingly, the warm pool started its dissipation immediately after attaining its maximum core temperature. This information can be included in the present numerical models to enhance the prediction capability. It was also found that the extent and intensity of the ASMWP varied depending on the type of monsoon i.e., excess, normal, and deficient monsoon. Maximum core temperature and wide coverage of the warm pool observed during the excess monsoon years compared to normal and deficient monsoon years. The study also revealed a strong relationship between the salinity in the eastern Arabian Sea and the nature of the monsoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An updated catalog of earthquakes has been prepared for the Andaman-Nicobar and adjoining regions. The catalog was homogenized to a unified magnitude scale, and declustering of the catalog was performed to remove aftershocks and foreshocks. Eleven regional source zones were identified in the study area to account for local variability in seismicity characteristics. The seismicity parameters were estimated for each of these source zones, and the seismic hazard evaluation of the Andaman-Nicobar region has been performed using different source models and attenuation relations. Probabilistic seismic hazard analysis has been performed with currently available data and their best possible scientific interpretation using an appropriate instrument such as the logic tree to explicitly account for epistemic uncertainty by considering alternative models (source models, maximum magnitude, and attenuation relationships). The hazard maps for different periods have been produced for horizontal ground motion on the bedrock level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the impact of the Indian Ocean Dipole (IOD) and El Nino and the Southern Oscillation (ENSO) on sea level variations in the North Indian Ocean during 1957-2008. Using tide-gauge and altimeter data, we show that IOD and ENSO leave characteristic signatures in the sea level anomalies (SLAs) in the Bay of Bengal. During a positive IOD event, negative SLAs are observed during April-December, with the SLAs decreasing continuously to a peak during September-November. During El Nino, negative SLAs are observed twice (April-December and November-July), with a relaxation between the two peaks. SLA signatures during negative IOD and La Nina events are much weaker. We use a linear, continuously stratified model of the Indian Ocean to simulate their sea level patterns of IOD and ENSO events. We then separate solutions into parts that correspond to specific processes: coastal alongshore winds, remote forcing from the equator via reflected Rossby waves, and direct forcing by interior winds within the bay. During pure IOD events, the SLAs are forced both from the equator and by direct wind forcing. During ENSO events, they are primarily equatorially forced, with only a minor contribution from direct wind forcing. Using a lead/lag covariance analysis between the Nino-3.4 SST index and Indian Ocean wind stress, we derive a composite wind field for a typical El Nino event: the resulting solution has two negative SLA peaks. The IOD and ENSO signatures are not evident off the west coast of India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past-a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600 years. The recurrence period of earthquakes may range up to 1,000 years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is a major human pathogen, first recognized as a leading cause of hospital-acquired infections. Community-associated S. aureus (CA-SA) pose a greater threat due to increase in severity of infection and disease among children and healthy adults. CA-SA strains in India are genetically diverse, among which is the sequence type (ST) 772, which has now spread to Australia, Europe and Japan. Towards understanding the genetic characteristics of ST772, we obtained draft genome sequences of five relevant clinical isolates and studied the properties of their PVL-carrying prophages, whose presence is a defining hallmark of CA-SA. We show that this is a novel prophage, which carries the structural genes of the hlb-carrying prophage and includes the sea enterotoxin. This architecture probably emerged early within the ST772 lineage, at least in India. The sea gene, unique to ST772 PVL, despite having promoter sequence characteristics typical of low expression, appears to be highly expressed during early phase of growth in laboratory conditions. We speculate that this might be a consequence of its novel sequence context. The crippled nature of the hlb-converting prophage in ST772. suggests that widespread mobility of the sea enterotoxin might be a selective force behind its `transfer' to the PVL prophage. Wild type ST772 strains induced strong proliferative responses as well as high cytotoxic activity against neutrophils, likely mediated by superantigen SEA and the PVL toxin respectively. Both proliferation and cytotoxicity were markedly reduced in a cured ST772 strain indicating the impact of the phage on virulence. The presence of SEA alongside he genes for the immune system-modulating PVL toxin may contribute to the success and virulence of ST772.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2004 Sumatra-Andaman earthquake was unprecedented in terms of its magnitude (M-w 9.2), rupture length along the plate boundary (1300 km) and size of the resultant tsunami. Since 2004, efforts are being made to improve the understanding of the seismic hazard in the Sumatra-Andaman subduction zone in terms of recurrence patterns of major earthquakes and tsunamis. It is reasonable to assume that previous earthquake events in the Myanmar Andaman segment must be preserved in the geological record in the form of seismo-turbidite sequences. Here we present the prospects of conducting deep ocean palaeoseismicity investigations in order to refine the quantification of the recurrence pattern of large subduction-zone earthquakes along the Andaman-Myanmar arc. Our participation in the Sagar Kanya cruise SK-273 (in June 2010) was to test the efficacy of such a survey. The primary mission of the cruise, along a short length (300 km) of the Sumatra Andaman subduction front was to collect bathymetric data of the ocean floor trenchward of the Andaman Islands. The agenda of our piggyback survey was to fix potential coring sites that might preserve seismo-turbidite deposits. In this article we present the possibilities and challenges of such an exercise and our first-hand experience of such a preliminary survey. This account will help future researchers with similar scientific objectives who would want to survey the deep ocean archives of this region for evidence of extreme events like major earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geologic evidence along the northern part of the 2004 Aceh-Andaman rupture suggests that this region generated as many as five tsunamis in the prior 2000years. We identify this evidence by drawing analogy with geologic records of land-level change and the tsunami in 2004 from the Andaman and Nicobar Islands (A&N). These analogs include subsided mangrove swamps, uplifted coral terraces, liquefaction, and organic soils coated by sand and coral rubble. The pre-2004 evidence varies in potency, and materials dated provide limiting ages on inferred tsunamis. The earliest tsunamis occurred between the second and sixth centuries A.D., evidenced by coral debris of the southern Car Nicobar Island. A subsequent tsunami, probably in the range A.D. 770-1040, is inferred from deposits both in A&N and on the Indian subcontinent. It is the strongest candidate for a 2004-caliber earthquake in the past 2000years. A&N also contain tsunami deposits from A.D. 1250 to 1450 that probably match those previously reported from Sumatra and Thailand, and which likely date to the 1390s or 1450s if correlated with well-dated coral uplift offshore Sumatra. Thus, age data from A&N suggest that within the uncertainties in estimating relative sizes of paleo-earthquakes and tsunamis, the 1000year interval can be divided in half by the earthquake or earthquakes of A.D. 1250-1450 of magnitude >8.0 and consequent tsunamis. Unlike the transoceanic tsunamis generated by full or partial rupture of the subduction interface, the A&N geology further provides evidence for the smaller-sized historical tsunamis of 1762 and 1881, which may have been damaging locally.