841 resultados para Allylic amine
Resumo:
The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from S. mansoni. Southern blot analysis shows that the two mRNAs are the products of different alleles of a single SmSERT gene locus. The two SmSERT forms differ in three amino acid positions near the N-terminus of the protein. Both SmSERTs are expressed in the adult form and in the sporocyst form (infected snails) of the parasite, but are absent from all other stages of the parasite`s complex life cycle. Heterologous expression of the two cDNAs in mammalian cells resulted in saturable, sodium-dependent serotonin transport activity with an apparent affinity for serotonin comparable to that of the human serotonin transporter. Although the two SmSERTs are pharmacologically indistinguishable from each other, efflux experiments reveal notably higher substrate selectivity for serotonin compared with their mammalian counterparts. Several well-established substrates for human SERT including (+/-)MDMA, S-(+)amphetamine, RU 24969, and m-CPP are not transported by SmSERTs, underscoring the higher selectivity of the schistosomal isoforms. Voltage-clamp recordings of SmSERT substrate-elicited currents confirm the substrate selectivity observed in efflux experiments and suggest that it may be possible to exploit the electrogenic nature of SmSERT to screen for compounds that target the parasite in vivo. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The medial prefrontal cortex (MPFC) is involved in cardiovascular control. MPFC electrical stimulation has been reported to cause depressor and bradycardic responses in anesthetized rats. Although the pathway involved is yet unknown, there is evidence indicating the existence of a relay in the lateral hypothalamus (LH). The medial forebrain bundle (MFB) that courses in the lateral portion of the LH carries the vast majority of telencephalic afferent as well efferent projections, including those from the MPFC. To evaluate if the hypotensive pathway originating in the MPFC courses the MFB, we studied the effect of coronal or sagittal knife cuts through the LH and other brain areas on the cardiovascular responses to MPFC electrical stimulation. Knife cuts were performed using blades I to 6 mm wide. Results indicate that the neural pathway descending from the MFB decussates early in the vicinity of MPFC, crossing the midline within the corpus callosurn and yielding two descending pathways that travel rostro-caudally in the lateral portion of the LH, within the MFB. The decussation was confirmed by histological analysis of brain sections processed after the injection of biotinilated dextran amine in the site of the stimulation in the MPFC. Because knife cuts through the LH ipsilateral had minimal effects on the cardiovascular responses and knife cuts performed contralateral to the stimulated MPFC had no effect on the response to MPFC stimulation, data indicate that the contralateral limb of the pathway may be only activated as an alternative pathway when the ipsilateral pathway is blocked. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aims: The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. Previously, we reported that noradrenaline (NA) microinjection into the dPAG caused a pressor response that was mediated by vasopressin release into the circulation. However, the neuronal pathway that mediates this response is as yet unknown. There is evidence that chemical stimulation of the diagonal band of Broca (dbB) also causes a pressor response mediated by systemic vasopressin release. In the present study, we evaluated the participation of the dbB in the pressor response caused by NA microinjection into the dPAG as well as the existence of neural connections between these areas. Main methods: With the above goal, we verified the effect of the pharmacological ablation of the dbB on the cardiovascular response to NA microinjection into the dPAG of unanesthetized rats. In addition, we microinjected the neuronal tracer biotinylated-dextran-amine (BDA) into the dPAG and looked for efferent projections from the dPAG to the dbB. Key findings: The pharmacologically reversible ablation of the dbB with local microinjection of CoCl(2) significantly reduced the pressor response caused by NA microinjection (15 nmol/50 nL) into the dPAG. In addition, BDA microinjection into the dPAG labeled axons in the dbB, pointing to the existence of direct connections between these areas. Significance: The present results indicate that synapses within the dbB are involved in the pressor pathway activated by NA microinjection into the VAG and direct neural projection from the dPAG to the dbB may constitute the neuroanatomic substrate for this pressor pathway. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. In a previous study, we reported that noradrenaline (NA) microinjection into the dPAG of rats caused pressor response that was mediated by vasopressin release. Vasopressin is synthesized by magnocellular neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. In the present study, we verified which nuclei mediated the cardiovascular response to NA as well as the existence of direct neural projection from the dPAG to hypothalamic nuclei. Then, we studied the effect of treating either PVN or SON with the nonselective synaptic blocker cobalt chloride (1 mM) on the cardiovascular response to NA (15 nmol) microinjection into dPAG. Attempting to identify neural projections from dPAG to hypothalamic nuclei, we microinjected the neuronal tracer biotinylated-dextran-amine (BDA) into the dPAG and searched varicosity-containing nerve terminals in the PVN and SON. Unilateral cobalt-induced inhibition of synapses in the SON did not affect the cardiovascular response to NA. However, unilateral inhibition of PVN significantly reduced the pressor response to NA. Moreover, cobalt-induced inhibition of synapses in both PVN blocked the pressor response caused by NA microinjected into the dPAG. Microinjection of BDA into the dPAG evidenced presence of varicosity-containing neuronal fibers in PVN but not in SON. The results from cobalt treatment indicated that synapses in PVN mediate the vasopressin-induced pressor response caused by NA microinjection into the dPAG. In addition, the neuroanatomical results from BDA microinjection into the dPAG pointed out the existence of direct neural projections from the dPAG site to the PVN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: The aim of the present study was to evaluate the effect of CO(2) laser irradiation (10.6 mu m) at 0.3 J/cm(2) (0.5 mu s; 226 Hz) on the resistance of softened enamel to toothbrushing abrasion, in vitro. Methods: Sixty human enamel samples were obtained, polished with silicon carbide papers and randomly divided into five groups (n = 12), receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C). After surface treatment they were submitted to a 25-day erosive-abrasive cycle in 100 ml sprite light (90 s) and brushed twice daily with an electric toothbrush. Between the demineralization periods samples were immersed in supersaturated mineral solution. At the end of the experiments enamel surface loss was determined using a contact profilometer and morphological analysis was performed using scanning electron microscopy (SEM). For SEM analysis of demineralization pattern, cross-sectional cuts of cycled samples were prepared. The data were statistically analysed by one-way ANOVA model with subsequent pairwise comparison of treatments. Results: Abrasive surface loss was significantly lower in all laser groups compared to both control and fluoride groups (p < 0.0001 in all cases). Amongst the laser groups no significant difference was observed. Softened enamel layer underneath lesions was less pronounced in laser-irradiated samples. Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3 J/cm(2) (5 mu s, 226 Hz) either alone or in combination with amine fluoride gel significantly decreases toothbrushing abrasion of softened-enamel, in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The aims of the present study were to investigate whether irradiation with a CO(2) laser could prevent surface softening (i) in sound and (ii) in already softened enamel in vitro. Methods: 130 human enamel samples were obtained and polished with silicon carbide papers. They were divided into 10 groups (n = 13) receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C); and submitted to 2 different procedures: half of the groups was acid-softened before surface treatment and the other half after. Immersion in 1% citric acid was the acid challenge. Surface microhardness (SMH) was measured at baseline, after softening and after treatment. Additionally, fluoride uptake in the enamel was quantified. The data were statistically analysed by two-way repeated measurements ANOVA and post hoc comparisons at 5% significance level. Results: When softening was performed either before or after laser treatment, the L group presented at the end of the experiments SMH means that were not significantly different from baseline (p = 0.8432, p = 0.4620). Treatment after softening resulted for all laser groups in statistically significant increase in SMH means as compared to values after softening (p < 0.0001). Enamel fluoride uptake was significantly higher for combined laser-fluoride treatment than in control (p < 0.0001). Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3J/cm(2) (5 mu s, 226 Hz) not only significantly decreased erosive mineral loss (97%) but also rehardened previously softened enamel in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To determine the influence of rate of polymerization, degree of conversion and volumetric shrinkage on stress development by varying the amount of photoinitiators in a model composite. Methods: Volumetric shrinkage (with a mercury dilatometer), degree of conversion, maximum rate of reaction (RP(max)) (with differential scanning calorimetry) and polymerization stress (with a controlled compliance device) were evaluated. Bis-GMA/TEGDMA (equal mass ratios) were mixed with a tertiary amine (EDMAB) and camphorqpinone, respectively, in three concentrations (wt%): high= 0.8/1.6; intermediate= 0.4/0.8 and low= 0.2/0.4. 80 wt% filler was added. Composites were photoactivated (400 mW/cm(2) x 40 seconds; radiant exposure=16J/cm(2)). A fourth experimental group was included in which the low concentration formulation was exposed for 80 seconds (32 J/cm(2)). Results: For the same radiant exposure, conversion, RP(max) and stress increased with photoinitiator concentration (P< 0.001). When the low concentration group exposed to 32 J/cm(2) was compared with the high and intermediate groups (exposed to 16 J/cm(2)), RPmax Still increased with the photoinitiator concentration between all levels (P< 0.001) but conversion and stress did not vary (P> 0.05). Shrinkage did not vary regardless of the photoinitiator concentration or radiant exposure. For the photoinitiator concentrations used in this study. Polymerization stress was influenced by conversion but not by rate of reaction. (Am J Dent 2009;22:206-210).
Resumo:
Objectives. To evaluate the influence of different tertiary amines on degree of conversion (DC), shrinkage-strain, shrinkage-strain rate, Knoop microhardness, and color and transmittance stabilities of experimental resins containing BisGMA/TEGDMA (3: 1 wt), 0.25wt% camphorquinone, 1wt% amine (DMAEMA, CEMA, DMPT, DEPT or DABE). Different light-curing protocols were also evaluated. Methods. DC was evaluated with FTIR-ATR and shrinkage-strain with the bonded-disk method. Shrinkage-strain-rate data were obtained from numerical differentiation of shrinkage-strain data with respect to time. Color stability and transmittance were evaluated after different periods of artificial aging, according to ISO 7491: 2000. Results were evaluated with ANOVA, Tukey, and Dunnett`s T3 tests (alpha = 0.05). Results. Studied properties were influenced by amines. DC and shrinkage-strain were maximum at the sequence: CQ < DEPT < DMPT <= CEMA approximate to DABE < DMAEMA. Both DC and shrinkage were also influenced by the curing protocol, with positive correlations between DC and shrinkage-strain and DC and shrinkage-strain rate. Materials generally decreased in L* and increased in b*. The strong exception was the resin containing DMAEMA that did not show dark and yellow shifts. Color varied in the sequence: DMAEMA < DEPT < DMPT < CEMA < DABE. Transmittance varied in the sequence: DEPT approximate to DABE < DABE approximate to DMPT approximate to CEMA < DMPT approximate to CEMA approximate to DMAEMA, being more evident at the wavelength of 400 nm. No correlations between DC and optical properties were observed. Significance. The resin containing DMAEMA showed higher DC, shrinkage-strain, shrinkage-strain rate, and microhardness, in addition to better optical properties. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
A series of novel macrocyclic tetraaza ligands that incorporate a naphthalene moiety as a photoactive chromophore have been prepared and structurally characterized as their Cu(II) complexes. Variable-temperature photophysical studies have concluded that the luminescence quenching evident in the Cu(H) complexes is due to intramolecular electronic energy transfer (EET). In their free-base forms, these ligands undergo reductive luminescence quenching via photoinduced electron transfer (PET) reactions, with proximate amine lone pairs acting as electron donors. Consequently, the emission behavior can be modulated by variations in pH and/or the presence of other Lewis acids such as Zn(H).
Resumo:
The CeIII, PrIII, NdIII, GdIII and YbIII complexes of the heptadentate ligand 2,2´,2´´-tris(salicylideneimino) triethylamine, H3trensal (in its trianionic form), have been synthesized and characterized structurally by X-ray crystallography. These five [Ln(trensal)] structures complete a rare isomorphous and isostructural series of lanthanoid complexes in the trigonal P–3c1 space group with a ≈ 13.1 and c ≈ 16.5 Å
Resumo:
Polarized absorption and emission spectra of trigonal single crystals of an Er(III) complex coordinated to a heptadentate tripodal ligand are reported at temperatures between 8 and 298 K. The assigned energy levels below the onset of ligand absorption (< 25 000 cm(-1)) are fitted to a parametrized electronic Hamiltonian. The C-3 site symmetry of the Er(HI) ion requires eight parameters for a full description of the ligand field within a one-electron operator description. This compound shows unusually large splittings of the multiplets, and the fitted parameters imply that this heptadentate ligand imparts the largest ligand field reported for an Er(III) complex. The ligand field was also interpreted within the angular overlap model (AOM). We derive the AOM matrix to include both sigma and anisotropic pi bonding and show that a useful description of the C-3 ligand field can be made using only five parameters. The success of the AOM description is encouraging for applications on isomorphous complexes within the lanthanide series and in describing the ligand field of low-symmetry complexes with less parameters than in the usual spherical harmonic expansion.
Resumo:
Free radical bulk copolymerization of methyl methacrylate (MMA) and allyl acetate (AAc) has been investigated using electron spin resonance (ESR) and FT-near infrared (FTNIR) spectroscopy. Data are used to evaluate the rate constants. The mole fraction of AAc plays an important role in the copolymerization of these two monomers. AAc not only delays the Trommsdorff effect but also increases the onset of percentage total conversion at which the Trommsdorff region begins. With AAc fraction 0.5 and higher, no Trommsdorff effect was observed. Inclusion of AAc into copolymer structure mainly occurs in the Trommsdorf region or when the AAc fraction in the comonomer feed is dominant. This is associated with a drop in the concentration of propagating radicals. However, ESR spectra indicate that the MMA propagating radical is predominant during the reaction. In the comonomer mixtures where a Trommsdorff region can be observed, the addition of AAc does not produce any significant change in k(p) and k(t) in the steady state region. Major changes in k(p) and k(t) are observed after the gel point and glassy state, respectively. (C) 2001 Society of Chemical Industry.
Resumo:
A comparative study of the high energy radiation resistance to formation of radicals in two pairs of polymers is reported. In one pair of polymers the phenyl groups containing the imide rings are separated by an ether linkage and in the other pair they are separated by an hexafluoroisopropylidine group. Two of the polymers contained aromatic amine units linked through an ether linkage and the other two polymers contained a trifluoromethyl biphenyl diamine. The polymers were shown to retain a high level of transparency in the visible region following radiolysis to doses as high as 8 Gy. ESR studies of the resistance to radical formation on radiolysis. at 77 K revealed that the polymers containing ether linkages were more stable than their fluorinated analogues, but all were less stable than Kapton (R). (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Cyclic peptides are appealing targets in the drug-discovery process. Unfortunately, there currently exist no robust solid-phase strategies that allow the synthesis of large arrays of discrete cyclic peptides. Existing strategies are complicated, when synthesizing large libraries, by the extensive workup that is required to extract the cyclic product from the deprotection/cleavage mixture. To overcome this, we have developed a new safety-catch linker. The safety-catch concept described here involves the use of a protected catechol derivative in which one of the hydroxyls is masked with a benzyl group during peptide synthesis, thus making the linker deactivated to aminolysis. This masked derivative of the linker allows BOC solid-phase peptide assembly of the linear precursor. Prior to cyclization, the linker is activated and the linear peptide deprotected using conditions commonly employed (TFMSA), resulting in deprotected peptide attached to the activated form of the linker. Scavengers and deprotection adducts are removed by simple washing and filtration. Upon neutralization of the N-terminal amine, cyclization with concomitant cleavage from the resin yields the cyclic peptide in DMF solution. Workup is simple solvent removal. To exemplify this strategy, several cyclic peptides were synthesized targeted toward the somatostatin and integrin receptors. From this initial study and to show the strength of this method, we were able to synthesize a cyclic-peptide library containing over 400 members. This linker technology provides a new solid-phase avenue to access large arrays of cyclic peptides.
Resumo:
Efficient intramolecular electronic energy transfer (EET) has been demonstrated for three novel bichromophoric compounds utilizing a macrocyclic spacer as the bridge between the electronic energy donor and acceptor fragments. As their free base forms, emission from the electronically excited donor is absent and the acceptor emission is reductively quenched via photoinduced oxidation of proximate amine lone pairs. As their Zn(II) complexes, excitation of the donor results in sensitization of the electronic acceptor emission.