965 resultados para Algebra, Boolean.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existe un ejemplar en lengua valenciana con el título: Algebra.Gràfiques : activitats per als-els alumnes de matemàtiques. ISBN: 84-482-0410-7

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existe un ejemplar en lengua valenciana con el título: Algebra.Gràfiques : activitats per a l'alumnat de matemàtiques. ISBN: 84-482-0441-7

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to design a control law for continuous systems with Boolean inputs allowing the output to track a desired trajectory. Such systems are controlled by items of commutation. This type of systems, with Boolean inputs, has found increasing use in the electric industry. Power supplies include such systems and a power converter represents one of theses systems. For instance, in power electronics the control variable is the switching OFF and ON of components such as thyristors or transistors. In this paper, a method is proposed for the designing of a control law in state space for such systems. This approach is implemented in simulation for the control of an electronic circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treating algebraic symbols as objects (eg. “‘a’ means ‘apple’”) is a means of introducing elementary simplification of algebra, but causes problems further on. This current school-based research included an examination of texts still in use in the mathematics department, and interviews with mathematics teachers, year 7 pupils and then year 10 pupils asking them how they would explain, “3a + 2a = 5a” to year 7 pupils. Results included the notion that the ‘algebra as object’ analogy can be found in textbooks in current usage, including those recently published. Teachers knew that they were not ‘supposed’ to use the analogy but not always clear why, nevertheless stating methods of teaching consistent with an‘algebra as object’ approach. Year 7 pupils did not explicitly refer to ‘algebra as object’, although some of their responses could be so interpreted. In the main, year 10 pupils used ‘algebra as object’ to explain simplification of algebra, with some complicated attempts to get round the limitations. Further research would look to establish whether the appearance of ‘algebra as object’ in pupils’ thinking between year 7 and 10 is consistent and, if so, where it arises. Implications also are for on-going teacher training with alternatives to introducing such simplification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we prove new results concerning the existence and various properties of an evolution system U(A+B)(t, s)0 <= s <= t <= T generated by the sum -(A(t) + B(t)) of two linear, time-dependent, and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express U(A+B)(t, s)0 <= s <= t <= T as the strong limit in C(8) of a product of the holomorphic contraction semigroups generated by -A (t) and - B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t) + B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND(t is an element of)[0,T] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in effect, allows us to reconstruct U(A)(t, s)0 <=(s)<=(t)<=(T) very simply in terms of the semigroup generated by -A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of timedependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrodinger type in quantum mechanics.