912 resultados para Alemania RF
THE DIFFERENT ROLES OF NITROGEN IN RF-SPUTTERED AND RF-GLOW DISCHARGE HYDROGENATED AMORPHOUS-SILICON
Resumo:
Multiwavelength pulses were generated using a monolithically integrated device. The device used is an integrated InGaAs/InGaAsP/InP multi-wavelength laser fabricated by selective area regrowth. The device self pulsated on all of the four wavelength channels. 48 ps pulses were obtained which were measured by a 50GHz oscilloscope and 32GHz photodiode which was not bandwidth limited. Simultaneous multi-wavelength pulse generation was also achieved.
Resumo:
CMOS nanocrystalline silicon thin film transistors with high field effect mobility are reported. The transistors were directly deposited by radio-frequency plasma enhanced chemical vapor deposition at 150°C The transistors show maximum field effect mobility of 450 cm2/V-s for electrons and 100 cm2/V-s for holes at room temperature. We attribute the high mobilities to a reduction of the oxygen content, which acts as an accidental donor. Indeed, secondary ion mass spectrometry measurements show that the impurity concentration in the nanocrystalline Si layer is comparable to, or lower than, the defect density in the material, which is already low thanks to hydrogen passivation.
Resumo:
Stoichiometric Er silicate thin films, monosilicate (Er2SiO 5) and disilicate (Er2Si2O7), have been grown on c-Si substrates by rf magnetron sputtering. The influence of annealing temperature in the range 1000-1200 °C in oxidizing ambient (O 2) on the structural and optical properties has been studied. In spite of the known reactivity of rare earth silicates towards silicon, Rutherford backscattering spectrometry shows that undesired chemical reactions between the film and the substrate can be strongly limited by using rapid thermal treatments. Monosilicate and disilicate films crystallize at 1100 and 1200 °C, respectively, as shown by x-ray diffraction analysis; the crystalline structures have been identified in both cases. Moreover, photoluminescence (PL) measurements have demonstrated that the highest PL intensity is obtained for Er2Si2O7 film annealed at 1200 °C. In fact, this treatment allows us to reduce the defect density in the film, in particular by saturating oxygen vacancies, as also confirmed by the increase of the lifetime of the PL signal. © 2008 IOP Publishing Ltd.