959 resultados para Ajuste de modelos não lineares


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objetivou-se avaliar a melhor modelagem para as variâncias genética aditiva, de ambiente permanente e residual da produção de leite no dia do controle (PLDC) de caprinos. Utilizaram-se modelos de regressão aleatória sobre polinômios ortogonais de Legendre com diferentes ordens de ajuste e variância residual heterogênea. Consideraram-se como efeitos fixos os efeitos de grupo de contemporâneos, a idade da cabra ao parto (co-variável) e a regressão fixa da PLDC sobre polinômios de Legendre, para modelar a trajetória média da população; e, como efeitos aleatórios, os efeitos genético aditivo e de ambiente permanente. O modelo com quatro classes de variâncias residuais foi o que proporcionou melhor ajuste. Os valores do logaritmo da função de verossimilhança, de AIC e BIC apontaram para seleção de modelos com ordens mais altas (cinco para o efeito genético e sete para o efeito de ambiente permanente). Entretanto, os autovalores associados às matrizes de co-variâncias entre os coeficientes de regressão indicaram a possibilidade de redução da dimensionalidade. As altas ordens de ajuste proporcionaram estimativas de variâncias genéticas e correlações genéticas e de ambiente permanente que não condizem com o fenômeno biológico estudado. O modelo de quinta ordem para a variância genética aditiva e de sétima ordem para o ambiente permanente foi indicado. Entretanto, um modelo mais parcimonioso, de quarta ordem para o efeito genético aditivo e de sexta ordem para o efeito de ambiente permanente, foi suficiente para ajustar as variâncias nos dados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilizaram-se 17.767 registros de peso de 4.210 cordeiros da raça Santa Inês com o objetivo de comparar modelos de regressão aleatória com diferentes estruturas para modelar a variância residual em estudos genéticos da curva de crescimento. Os efeitos fixos incluídos na análise foram: grupo contemporâneo e idade da ovelha no parto. As regressões fixas e aleatórias foram ajustadas por meio de polinômios de Legendre de ordens 4 e 3, respectivamente. A variância residual foi ajustada por meio de classes heterogêneas e por funções de variância empregando polinômios ordinários e de Legendre de ordens 2 a 8. O modelo considerando homogeneidade de variâncias residuais mostrou-se inadequado. de acordo com os critérios utilizados, a variância residual contendo sete classes heterogêneas proporcionou melhor ajuste, embora um mais parcimonioso, com cinco classes, pudesse ser utilizado sem perdas na qualidade de ajuste da variância nos dados. O ajuste de funções de variância com qualquer ordem foi melhor que o obtido por meio de classes. O polinômio ordinário de ordem 6 proporcionou melhor ajuste entre as estruturas testadas. A modelagem do resíduo interferiu nas estimativas de variâncias e parâmetros genéticos. Além da alteração da classificação dos reprodutores, a magnitude dos valores genéticos preditos apresenta variações significativas, de acordo com o ajuste da variância residual empregado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho propõe um ambiente computacional aplicado ao ensino de sistemas de controle, denominado de ModSym. O software implementa uma interface gráfica para a modelagem de sistemas físicos lineares e mostra, passo a passo, o processamento necessário à obtenção de modelos matemáticos para esses sistemas. Um sistema físico pode ser representado, no software, de três formas diferentes. O sistema pode ser representado por um diagrama gráfico a partir de elementos dos domínios elétrico, mecânico translacional, mecânico rotacional e hidráulico. Pode também ser representado a partir de grafos de ligação ou de diagramas de fluxo de sinal. Uma vez representado o sistema, o ModSym possibilita o cálculo de funções de transferência do sistema na forma simbólica, utilizando a regra de Mason. O software calcula também funções de transferência na forma numérica e funções de sensibilidade paramétrica. O trabalho propõe ainda um algoritmo para obter o diagrama de fluxo de sinal de um sistema físico baseado no seu grafo de ligação. Este algoritmo e a metodologia de análise de sistemas conhecida por Network Method permitiram a utilização da regra de Mason no cálculo de funções de transferência dos sistemas modelados no software

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation contributes for the development of methodologies through feed forward artificial neural networks for microwave and optical devices modeling. A bibliographical revision on the applications of neuro-computational techniques in the areas of microwave/optical engineering was carried through. Characteristics of networks MLP, RBF and SFNN, as well as the strategies of supervised learning had been presented. Adjustment expressions of the networks free parameters above cited had been deduced from the gradient method. Conventional method EM-ANN was applied in the modeling of microwave passive devices and optical amplifiers. For this, they had been proposals modular configurations based in networks SFNN and RBF/MLP objectifying a bigger capacity of models generalization. As for the training of the used networks, the Rprop algorithm was applied. All the algorithms used in the attainment of the models of this dissertation had been implemented in Matlab

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eutrophication has been listed as one of the main problems of water pollution on a global level. In the Brazilian semi-arid areas this problem takes even greater proportions due to characteristical water scarcity of the region. It is extremely important to the predictive eutrophication models development and to the reservoirs management in the semi-arid region, studies that promotes understanding of the mechanisms responsible for the expansion and control of algae blooms, essential for improving the water quality of these environments. The present study had as its main aims, evaluate the temporal pattern of trophic state, considering the influence of nutrients (N and P) and the light availability in the water column in the development of phytoplankton biomass, and perform the mathematical modelling of changes in phosphorus and chlorophyll a concentrations in the Cruzeta man-made lake located on Seridó, a typical semi-arid region of Rio Grande do Norte. To this, a fortnightly monitoring was performed in the reservoir in 05 stations over the months of March 2007 to May 2008. Were measured the concentrations of total phosphorus, total organic nitrogen, chlorophyll a, total, fixed and volatile suspended solids, as well as the measure of transparency (Secchi) and the profiles of photosynthetic active radiation (PAR), temperature, pH, dissolved oxygen and electrical conductivity in the water column. Measurements of vertical profiles have shown some periods of chemical and thermal stratification, especially in the rainy season, due to increased water column depth, however, the reservoir can be classified as warm polimitic. During the study period the reservoir was characterized as eutrophic considering the concentrations of phosphorus and most of the time as mesotrophic, based on the concentrations of chlorophyll a, according to the Thornton & Rast (1993) classification. The N:P relations suggest N limitation, conversely, significant linear relationship between the algae biomass and nutrients (N and P) were not observed in our study. However, a relevant event was the negative and significant correlation presented by Kt and chlorophyll a (r ² = 0.83) at the end of the drought of 2007 and the rainy season of 2008, and the algal biomass collapse observed at the end of the drought season (Dec/07). The equation used to simulate the change in the total phosphorus was not satisfactory, being necessary inclusion of parameters able to increase the power of the model prediction. The chlorophyll a simulation presented a good adjustment trend, however there is a need to check the calibrated model parameters and subsequent equation validation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is a detailed study of self-similar models for the expansion of extragalactic radio sources. A review is made of the definitions of AGN, the unified model is discussed and the main characteristics of double radio sources are examined. Three classification schemes are outlined and the self-similar models found in the literature are studied in detail. A self-similar model is proposed that represents a generalization of the models found in the literature. In this model, the area of the head of the jet varies with the size of the jet with a power law with an exponent γ. The atmosphere has a variable density that may or may not be spherically symmetric and it is taken into account the time variation of the cinematic luminosity of the jet according to a power law with an exponent h. It is possible to show that models Type I, II and III are particular cases of the general model and one also discusses the evolution of the sources radio luminosity. One compares the evolutionary curves of the general model with the particular cases and with the observational data in a P-D diagram. The results show that the model allows a better agreement with the observations depending on the appropriate choice of the model parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present residual analysis techniques to assess the fit of correlated survival data by Accelerated Failure Time Models (AFTM) with random effects. We propose an imputation procedure for censored observations and consider three types of residuals to evaluate different model characteristics. We illustrate the proposal with the analysis of AFTM with random effects to a real data set involving times between failures of oil well equipment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In survival analysis, the response is usually the time until the occurrence of an event of interest, called failure time. The main characteristic of survival data is the presence of censoring which is a partial observation of response. Associated with this information, some models occupy an important position by properly fit several practical situations, among which we can mention the Weibull model. Marshall-Olkin extended form distributions other a basic generalization that enables greater exibility in adjusting lifetime data. This paper presents a simulation study that compares the gradient test and the likelihood ratio test using the Marshall-Olkin extended form Weibull distribution. As a result, there is only a small advantage for the likelihood ratio test

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objetivou-se comparar modelos de regressão aleatória com diferentes estruturas de variância residual, a fim de se buscar a melhor modelagem para a característica tamanho da leitegada ao nascer (TLN). Utilizaram-se 1.701 registros de TLN, que foram analisados por meio de modelo animal, unicaracterística, de regressão aleatória. As regressões fixa e aleatórias foram representadas por funções contínuas sobre a ordem de parto, ajustadas por polinômios ortogonais de Legendre de ordem 3. Para averiguar a melhor modelagem para a variância residual, considerou-se a heterogeneidade de variância por meio de 1 a 7 classes de variância residual. O modelo geral de análise incluiu grupo de contemporâneo como efeito fixo; os coeficientes de regressão fixa para modelar a trajetória média da população; os coeficientes de regressão aleatória do efeito genético aditivo-direto, do comum-de-leitegada e do de ambiente permanente de animal; e o efeito aleatório residual. O teste da razão de verossimilhança, o critério de informação de Akaike e o critério de informação bayesiano de Schwarz apontaram o modelo que considerou homogeneidade de variância como o que proporcionou melhor ajuste aos dados utilizados. As herdabilidades obtidas foram próximas a zero (0,002 a 0,006). O efeito de ambiente permanente foi crescente da 1ª (0,06) à 5ª (0,28) ordem, mas decrescente desse ponto até a 7ª ordem (0,18). O comum-de-leitegada apresentou valores baixos (0,01 a 0,02). A utilização de homogeneidade de variância residual foi mais adequada para modelar as variâncias associadas à característica tamanho da leitegada ao nascer nesse conjunto de dado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A utilização de funções matemáticas para descrever o crescimento animal é antiga. Elas permitem resumir informações em alguns pontos estratégicos do desenvolvimento ponderal e descrever a evolução do peso em função da idade do animal. Também é possível comparar taxas de crescimento de diferentes indivíduos em estados fisiológicos equivalentes. Os modelos de curvas de crescimento mais utilizados na avicultura são os derivados da função Richards, pois apresentam parâmetros que possibilitam interpretação biológica e portanto podem fornecer subsídios para seleção de uma determinada forma da curva de crescimento em aves. Também pode-se utilizar polinômios segmentados para descrever as mudanças de tendência da curva de crescimento animal. Entretanto, existem importantes fatores de variação para os parâmetros das curvas, como a espécie, o sistema de criação, o sexo e suas interações. A adequação dos modelos pode ser verificada pelos valores do coeficiente de determinação (R2), do quadrado médio do resíduo (QM res), do erro de predição médio (EPm), da facilidade de convergência dos dados e pela possibilidade de interpretação biológica dos parâmetros. Estudos envolvendo modelagem e descrição da curva de crescimento e seus componentes são amplamente discutidos na literatura. Porém, programas de seleção que visem a progressos genéticos para a forma da curva não são mencionados. A importância da avaliação dos parâmetros dos modelos de curvas de crescimento é ainda mais relevante já que os maiores ganhos genéticos para peso estão relacionados com seleção para pesos em idades próximas ao ponto de inflexão. A seleção para precocidade pode ser auxiliada com base nos parâmetros do modelo associados à variáveis que descrevem esta característica genética dos animais. Esses parâmetros estão relacionados a importantes características produtivas e reprodutivas e apresentam magnitudes diferentes, de acordo com a espécie, o sexo e o modelo utilizados na avaliação. Outra metodologia utilizada são os modelos de regressão aleatória, permitindo mudanças graduais nas covariâncias entre idades ao longo do tempo e predizendo variâncias e covariâncias em pontos contidos ao longo da trajetória estudada. A utilização de modelos de regressões aleatórias traz como vantagem a separação da variação da curva de crescimento fenotípica em seus diferentes efeitos genético aditivo e de ambiente permanente individual, mediante a determinação dos coeficientes de regressão aleatórios para esses diferentes efeitos. Além disto, não há necessidade de utilizar fatores de ajuste para a idade. Esta revisão teve por objetivos levantar os principais modelos matemáticos frequentistas utilizados no estudo de curvas de crescimento de aves, com maior ênfase nos empregados com a finalidade de estimar parâmetros genéticos e fenotípicos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O modelo misto consiste numa importante classe de modelos que tem sido tradicionalmente analisada por meio de procedimentos da análise de variância. Nos modelos mistos, três aspectos são fundamentais: estimação e testes de hipóteses dos efeitos fixos, predição dos efeitos aleatórios e estimação dos componentes de variância. Na análise de modelos lineares mistos desbalanceados, a estimação dos componentes de variância é de fundamental importância e depende da estrutura de covariâncias e dos métodos de estimação utilizados. Nesse contexto, este artigo pretende apresentar os principais métodos de estimação e de análise utilizados no estudo de modelos lineares mistos com estruturas gerais de covariâncias nos efeitos aleatórios, disponíveis no procedimento MIXED, do SAS (Statistical Analysis System).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programas de melhoramento são atividades que se desenvolvem durante anos e, por isso, devem ser flexíveis ao ajuste às novas situações criadas por mudanças nas tendências de mercado, na situação econômica e aquelas causadas por aumento do volume e qualidade dos dados e, também, por novas técnicas propostas pela comunidade científica. O ajuste a essas últimas deve ser feito, principalmente, por meio da substituição e escolha do modelo mais adequado para a descrição do fenômeno, em um determinado cenário. Os dados de ganho de peso médio diário, de um programa de melhoramento de suínos, envolvendo as raças Duroc, Landrace e Large White, foram analisados por meio da teoria bayesiana, por meio de dois modelos candidatos. Foram simulados três níveis de informação à priori: informativa, pouco informativa e não informativa. O comportamento das curvas das distribuições à posteriori e as respectivas estimativas associadas a cada nível de informação à priori foram analisadas e comparadas. Os resultados indicam que no modelo mais simples, as amostras das três raças são suficientes para produzir estimativas que não são alteradas pela informação à priori. Com relação ao mais parametrizado, as estimativas, para a raça Duroc, são alteradas pelo conhecimento prévio e, nesse caso, deve se buscar a melhor representação possível da distribuição à priori para obtenção de estimativas que são mais adequadas, dado o estado de conhecimento atual do melhorista.