838 resultados para African fig fly
Resumo:
The dominant discourses on the issue of asylum have placed it on a uniquely higher level of scrutiny as a politically very sensitive area for social research. Today, member states within the EU have implemented stricter policies to control new arrivals, whilst instituting statutory procedures to manage the existing asylum claims. In 2010, the number of applicants for asylum in Finland totalled 5988, out of which 1784 were given positive decisions. This thesis endeavour to highlight asylum seekers in the discourses about them by adding their voices to the discussions of them in contemporary Finland. Studies, which has concentrated on asylum seekers in Finland, uses the living conditions within asylum reception centres to assess the impacts of structural barriers on asylum seekers’ efforts to deal with the asylum process. By highlighting the impacts of the entire asylum process, which I believe starts from the country of origin; I focus on examining narratives of dealing with the experience of liminality whilst waiting for asylum, and then explore areas of possible participation within informal social networks for West African asylum seekers in Finland. The overall aim is to place the current research within the broader sociological discussion of ‘belonging’ for asylum seekers who are yet to be recognized as refugees, and who exist in a state of limbo. Methodologically, oral interviews, self-written autobiographical narratives, and ethnographic field work are qualitatively combined as data in this thesis for an empirical study of West African male asylum seekers in Finland. Narrative analysis is employed to analyze the data for this thesis. The ethnographic research data for the study began in May 2009 and ended in August of 2010. Altogether, ten interviews and four self-written narratives were collected as data. In total seven hours of audio recording were made, along eleven pages of hand-written autobiographical narratives. Field observation notes are employed in the study to provide contexts to the active interactional processes of interpretation throughout the analysis. Findings from the study suggest that within the experience of liminality, which surrounds the entire asylum process, participations within informal social networks are found to be important to the process of re-making place and the sense of belonging. My study shows that this is necessary to countering the experience of boredom, stress and social isolation, which permeate all aspects of life for West African asylum seekers, whilst they wait for asylum decisions in Finland.
Resumo:
The strength of fly ash mixture often needs to be enhanced for its better utilization in geotechnical and environmental applications. Many fly ashes often improve their strength with lime but may not meet the requirements. Gypsum, which reduces the lime leachability, further improves the strength. An attempt is made in this paper to study the effect of gypsum on the strength development of two Class F fly ashes with different lime contents after curing them for different periods. The sustainability of improved strength has been examined after soaking the cured specimens in water and with different leachates containing heavy-metal ions. The strength of both the fly ashes investigated improved markedly up to a particular amount of the lime content, which can be taken as optimum lime content, and thereafter the improvement is gradual. The improvement in strength at higher lime contents continues for a longer period (even up to 180 days). Gypsum accelerates the gain in strength for lime-stabilized fly ashes, particularly in the initial curing periods at about optimum lime content. At high lime contents gypsum attributes very high strength after curing for long periods mainly due to the alteration of fly ash lime reaction compounds. Gypsum not only improves the reduction in the loss of strength due to soaking even at low curing periods but also improves the durability of stabilized fly ashes due to repeated cycles of wetting and drying.
Resumo:
Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The accumulation of fly ash throughout the world is several million tons per day. The main problem with the usage of fly ash is the slow rate of strength gain, primarily due to slow pozzolanic reactions. Existing methods of proportioning fly ash concrete are lacking. These methods are involved and do not directly take into account the properties of the constituent materials. The Generalized Approach for Mix Proportioning developed at the Indian Institute of Science, Bangalore, is the basis for the development of the proposed method, which takes into account the characteristics of cement, fly ash, and aggregates. Based on the basic trial mix data obtained by using the American Concrete Institute (ACI 211.1-81) method, the proportions of fly-ash concrete mixes were arrived at using the Generalized Approach for Mix Proportioning. The method proposed was applied to and found applicable for fly-ash concretes using fly ashes from two different sources.
Resumo:
Clay liners have been widely used to contain toxic and hazardous waste materials. Clays absorb contaminant cations due to their exchange capacity. To improve the performance of the clay liner, fly ash, a waste material arising from the combustion of coal has been studied as a pre-filter material. In particular, the retention of lead by two different fly ashes was studied. The influence of pH on retention as well as leaching characteristics are also examined. The results obtained from the retention experiments by the permeameter method indicate that fly ash retains the lead ions through precipitation in the pores as well as onto the surface when the ambient pH value is more than 5.5, and through adsorption when the pH value is less than 5.5. It has been observed that fly ash did not release the retained lead ions when the pH value is between 3.5 and 10.0. Hence, the retention of lead ions by fly ash is likely to be permanent since the pH of most of the municipal landfill leachates are within 3.7 to 8.8. However, for highly acidic or alkaline leachates, the retained ions can get released.
Resumo:
Clay liners have been widely used to contain toxic and hazardous wastes. Clays adsorb the contaminant cations due to their exchange capacity. To improve the performance of the clay liner, fly ash, a waste material arising out of combustion of coal has been studied as a pre-filter material. The results indicate that fly ash has the potential to retain heavy metal ions. This study concerns the retention of zinc by fly ash. The influence of pH on retention as well as leaching characteristics are examined. The results obtained from the retention experiments by permeameter method indicate that fly ash retains the zinc ions through precipitation in the pores as well as onto the surface when the ambient pH value is more than 6.9, and only through adsorption when the pH value is less than 6.9. It has been observed that fly ash did not release the retained zinc ions when the pH value is between 3.5 and 10.0. Hence, the retention of zinc ions by fly ash is likely to be permanent since the pH of most of the landfill leachates are between 3.7 to 8.8.
Resumo:
Abundant quantities of fly ash have been produced by thermal power plants situated ail over the world. Many applications of fly ash depend upon its pozzolanic reactivity. This reactivity depends upon many factors, including lime content. Many fly ashes show marked improvement with the addition of lime. However, for every fly ash, there is an optimum lime content for its maximum reactivity. There is no well-established simple test to determine the optimum lime content. In this paper an attempt is made to use a simple physical and physico chemical test to determine the optimum lime content. The principle behind the use of a pH test, liquid limit test, and free swell index test to determine the optimum lime content has been explained. All the methods predict nearly the same optimum lime content and correlate well with that determined by the strength test.
Resumo:
A knowledge of permeability and consolidation is essential in a number of engineering problems such as settlement, seepage, and stability of the structures. Since fly ash is used very widely for several geotechnical applications, there is a need to understand its permeability and consolidation behavior. This paper presents a detailed study conducted on two Indian fly ashes. It brings out the role of chemical composition (free lime) on the permeability and consolidation behavior of fly ashes. It is found that the permeability values computed based on grain-size distribution agree well with those obtained based on test data.
Resumo:
Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.
Resumo:
Particulate composites based on polymer matrices generally contain fillers, especially those that are abundantly available and are cheaper. The inclusion of these, besides improving the properties, makes the system costwise viable, In the present study, fly ash was tried as a filler in epoxy. The filler particle surfaces were modified using three chemical surface treatment techniques in order to elicit the effect of adhesion at the interface on the mechanical properties of these composites. The compatibilizing of the filler with the use of a silane coupling agent yielded the best compression strength values. Scanning Electron Microscopy (SEM) has been used to characterize and supplement the mechanical test data.
Resumo:
Particulate reinforcements for polymers are selected with dual objective of improving composite properties and save on the total cost of the system. In the present study fly ash, an industrial waste with good properties is used as filler in epoxy and the compressive properties of such composites are studied. Particle surfaces are treated chemically using a silane-coupling agent to improve the compatibility with the matrix. The compressive properties of these are compared with those made of untreated fly ash particulates. Furthermore properties of fly ash composites with two different average particle sizes are first compared between themselves and then with those made using the as-received bimodal nature of particle size distribution. Microscopic observations of compression tested samples revealed a better adherence of the particles with the matrix in case of treated particles and regards the size effect the composites with lower average particle size showed improved strength at higher filler contents. Experimental values of strengths and modulii are compared with some of the theoretical models for composite properties. (C) 2002 Kluwer Academic Publishers.
Resumo:
Polymer composites are generally filled with either fibrous or particulate materials to improve the mechanical properties. In choosing the fillers one looks for materials that are inexpensive and available in abundance, in order to realize a cost reduction also. Also, often these fibres/fillers are treated to improve the matrix adhesion and thereby mechanical properties. The present study is focussed on the influence of water ingression in such filler-modified composites and the attendant changes in the compressive properties. The changes in property effected following exposure to aqueous media and the influence interface modification has on the scenario is emphasized in the work. It is seen that for plain epoxy and fly ash filled systems the strengths are increased following exposure to aqueous media. The composites with surface-treated ash particles, on the other hand, record a drop in the values. Modulus values show are increased to varying degree in unfilled and filled systems. The study also includes a fractographic analysis of the tested samples with and without exposure to water.
Resumo:
Fly ash and silica fume are two pozzolans that have been widely used for improved concrete strength and durability. Silica fume displays a greater pozzolanic reactivity than fly ash primarily due to its finer particle size. The reactivity of fly ash can be improved by reducing its particle size distribution. This paper discusses the fresh and hardened properties of concrete made with an ultra-fine fly ash (UFFA) produced by air classification. Durability testing for chloride diffusivity, rapid chloride permeability, alkali-silica reaction (ASR), and sulfate attack was also conducted It was found that at a given workability and water content, concrete containing UFFA could be produced with only 50% of the high-range water-reducer dosage required for comparable silica fume concrete. Similar early strengths and durability measures as silica fume concrete were observed when a slightly higher dosage of UFFA was used with a small reduction (10%) in water content.
Resumo:
The impact behaviour of epoxy specimens containing 20% by volume of fly ash particles without (coded, FA20) and with surface enveloped by starch in dry (FAS20) and water-ingresses (FASM20) conditions is studied. The resulting behavioural patterns are documented and compared to the composites containing as received fly ash particles. The data on unreinforced (i.e. neat) epoxy system (designated, NE) are also included. Samples with starch covering for the fillers whether tested in dry or wet conditions (i.e. FAS20 & FASM20) showed greater absorption of energy and maximum load compared to the ones derived on composites having as received fillers tested in unexposed (dry) condition (FA20). Ductility Index, D.I. on the other hand, showed a reversal in trends; the energy absorbed was highest for NE and lowest FA20 samples. Scanning microscopic examination of the fracture features was undertaken to correlate the microstructure to impact response.