957 resultados para Active power filters


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aurizon, Australia's largest freight railway operator, is investigating the use of Rail Power Conditioner (RPC) technology for load balancing, reactive power compensation and harmonic filtering. The new technology has the capability of replacing Static VAr Compensators (SVC) and Harmonic Filters, and is expected to have a significant impact on the overall costs of railway electrification. This paper presents the theoretical analysis of the real and reactive power flows in an RPC used to balance active powers in an existing V/V feeder station. This informed an RPC feasibility study undertaken at four existing Aurizon's feeder stations with V/V connected transformers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A procedure has been given for minimizing the total output noise of a Generalized Impedance Converter (GIC), subject to constraints dictated by signal handling capability of the Operational Amplifiers and ease of microcircuit fabrication. The noise reduction is achieved only by the adjustment of RC elements of the GIC, and the total output noise after optimization in the example cited is close to the theoretical lower limit. The output noise of a higher-order filter can be reduced by RC-optimizing the individual GIC's of the active realization. Experimental results on a 20–24 kHz channel bank band-pass filter demonstrate the effectiveness of the above procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Grid-connected inverters require a third-order LCL filter to meet standards such as the IEEE Std. 519-1992 while being compact and cost-effective. LCL filter introduces resonance, which needs to be damped through active or passive methods. Passive damping schemes have less control complexity and are more reliable. This study explores the split-capacitor resistive-inductive (SC-RL) passive damping scheme. The SC-RL damped LCL filter is modelled using state space approach. Using this model, the power loss and damping are analysed. Based on the analysis, the SC-RL scheme is shown to have lower losses than other simpler passive damping methods. This makes the SC-RL scheme suitable for high power applications. A method for component selection that minimises the power loss in the damping resistors while keeping the system well damped is proposed. The design selection takes into account the influence of switching frequency, resonance frequency and the choice of inductance and capacitance values of the filter on the damping component selection. The use of normalised parameters makes it suitable for a wide range of design applications. Analytical results show the losses and quality factor to be in the range of 0.05-0.1% and 2.0-2.5, respectively, which are validated experimentally.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modern pulse-width-modulated (PWM) rectifiers use LC L filters that can be applied in both the common mode and differential mode to obtain high-performance filtering. Interaction between the passive L and C components in the filter leads to resonance oscillations. These oscillations need to be damped either by the passive damping or active damping. The passive damping increases power loss and can reduce the effectiveness of the filter. Methods of active damping, using control strategy, are lossless while maintaining the effectiveness of the filters. In this paper, an active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground. An approach based on pole placement by the state feedback is used to actively damp both the differential-and common-mode filter oscillations. Analytical expressions for the state-feedback controller gains are derived for both continuous and discrete-time model of the filter. Tradeoff in selection of the active damping gain on the lower order power converter harmonics is analyzed using a weighted admittance function. Experimental results on a 10-kVA laboratory prototype PWM rectifier are presented. The results validate the effectiveness of the active damping method, and the tradeoff in the settings of the damping gain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wavelength offset super Gaussian optical filters enable 7dB increases in optical power budget of 11.25Gb/s optical OFDM PON systems using directly modulated DFBs, considerably relax filter bandwidth requirement and improve performance robustness to bandwidth variation. © 2011 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of 0.02nm bandwidth optical bandpass filters with 0.01nm wavelength offsets from optical carrier wavelengths in the optical OFDM (OOFDM) transmitter improves optical power budgets by 7dB at a total channel BER of 1×10 -3 in directly modulated laser-based IMDD PON systems. ©2010 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-power converters usually need longer dead-times than their lower-power counterparts and a lower switching frequency. Also due to the complicated assembly layout and severe variations in parasitics, in practice the conventional dead-time specific adjustment or compensation for high-power converters is less effective, and usually this process is time-consuming and bespoke. For general applications, minimising or eliminating dead-time in the gate drive technology is a desirable solution. With the growing acceptance of power electronics building blocks (PEBB) and intelligent power modules (IPM), gate drives with intelligent functions are in demand. Smart functions including dead time elimination/minimisation can improve modularity, flexibility and reliability. In this paper, a dead-time minimisation using Active Voltage Control (AVC) gate drive is presented. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cascaded 4×4 SOA switches with on-chip power monitoring exhibit potential for lowpower 16×16 integrated switches. Cascaded operation at 10Gbit/s with an IPDR of 8.5dB and 79% lower power consumption than equivalent all-active switches is reported © 2013 OSA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-performance power switching devices (IGBT/MOSFET) realise high-performance power converters. Unfortunately, with a high switching speed of the IGBT or MOSFET freewheel diode chopper cell, the circuit has intrinsic sources of high-level EMI. Therefore, costly EMI filters or shielding are normally demanded on the load and supply side. Although an S-shaped voltage transient with a high order of derivation eliminates the discontinuity and could suppress HF spectrum of EMI emissions, a practical control scheme is still under development. In this paper, Active Voltage Control (AVC) is applied to successfully define IGBT switching dynamics with a smoothed Gaussian waveform so a reduced EMI can be achieved without extra EMI suppression devices. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force IGBT to follow a pre-set switching trajectory. The initial objective of AVC was mainly to synchronise the switching of IGBTs connected in series so as to realise voltage balancing between devices. For a single IGBT switching, the AVC reference needs further optimisation. Thus, a predictive manner of AVC reference generation is required to cope with the nonlinear IGBT switching parameters while performing low loss switching. In this paper, an improved AVC structure is adopted along with a revised reference which accommodates the IGBT nonlinearity during switching and is predictive based on current being switched. Experimental and simulation results show that close control of a single IGBT switching is realised. It is concluded that good performance can be obtained, but the proposed method needs careful stability analysis for parameter choice. © 2013 IEEE.